首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
0.5 at.% Yb:YAlO(3)(YAP), 5 at.% Yb:YAP and 15 at.% Yb:YAP were grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and their emission line shape was calculated using the method of reciprocity. It was observed that the fluorescence spectra changed appreciably with the increasing of Yb concentration. For 0.5 at.% Yb:YAP, the line shape of fluorescence is very similar with the calculated emission line shape; with the increasing of Yb doping concentration, the line shape of fluorescence is very different from the calculated emission line shape. These phenomena are caused by the strong self-absorption at 979 and 999 nm for Yb:YAP.  相似文献   

2.
To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability (n=1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν(1) band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the CC stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the CC stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν(1) band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.  相似文献   

3.
Water plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content. We show how water participates in excess energy dissipation by vibrational cooling of the non-thermally populated Qy band at different rates in different types of clusters but exhibits no polar solvation dynamics. For the micelles, we observe a bifurcation of stimulated emission line shape, whereas a positive-to-negative switching of differential absorption is observed for the rods; both these observations are correlated with their specific structural aspects. Density functional theory calculations reveal two possible stable ground state geometries of dimers, accounting for the bifurcation of line shape in micelles. Thus, our study elucidates water-mediated structure–function relationship within these pigment assemblies.  相似文献   

4.
The spectrum of electrons elastically backscattered from the surface and within its vicinity reflects the probability of electron elastic backscattering on the surface atoms, quasi‐elastic scattering and the inelastic scattering visible in the low energy side of the elastic peak. The method for investigating the processes of electron elastic backscattering on the surface atom is called the elastic peak electron spectroscopy (EPES). In the present work, AuNi alloys of different compositions are investigated using X‐ray photoelectron spectroscopy (XPS) and the EPES method with the aid of the line shape analysis called the fuzzy k‐nearest neighbour (fkNN) rule. The line shape analysis was found to be applicable for EPES spectroscopy. It allows distinguishing the surfaces exhibiting various surface roughness, texture and grain size, and quantifying the selected information depths. The quantitative results obtained from the XPS analysis and the EPES spectra line shape analysis indicated Au surface segregation with Au surface enriched profile. Quantitative discrepancies are discussed within the non‐uniform concentration profiles of constituents due to sputter cleaning and annealing, different diffusion coefficients for Au and Ni, differences in the information depths sampled by XPS and EPES methods and differences in electron elastic backscattering cross‐sections for Ni and Au. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A general quantum theoretical approach of the upsilon(X-H) IR line shape of cyclic dimers of weakly H-bonded species in the crystal state is proposed. In this model, the adiabatic approximation (allowing to separate the high-frequency motion from the slow one of the H-bond bridge) is performed for each separate H-bond bridge of the dimer and a strong nonadiabatic correction is introduced into the model via the resonant exchange between the fast-mode excited states of the two moieties. Quantum indirect damping and Fermi resonances are taken into account. The present model reduces satisfactorily to many models in the literature dealing with more special situations. It has been applied to the cyclic dimers of adipic acid in the crystal phase. It correctly fits the experimental line shape of the hydrogenated compound and predicts satisfactorily the evolution in the line shapes with temperature and the change in the line shape with isotopic substitution.  相似文献   

6.
This work extends a recent EPR study on light-driven electron and energy transfer in a self-assembled zinc porphyrin-pyridylfullerene (ZnP-PyrF) complex. We report on a triplet line shape analysis of the photoexcited PyrF monomer and the ZnP-PyrF complex dissolved in isotropic and anisotropic matrixes of different polarity, namely, toluene, tetrahydrofuran (THF), and the nematic liquid crystals (LCs), E-7 and ZLI-4389. The line shape of the unbound *(3)PyrF obtained in both isotropic matrixes exhibits triplet parameters similar to those obtained for other monoadducts of C(60) under similar experimental conditions. On the other hand, 8(3)PyrF oriented in the LCs shows a complicated line shape, which is attributed to two conformers: (a) an axial dominant (85%) configuration characterized by triplet parameters, similar to those obtained in the isotropic matrixes and (b) a bent configuration associated with spin density localized about the poles accompanied by sign reversal of the ZFS parameter D of the *(3)C(60) moiety. Further, since in both LCs the ZnP-PyrF complex mainly exhibits a conformation with axial symmetry, the differences between the electron and the energy transfer routes in each LC are attributed to their different polarity. This study reflects the strength of LC matrixes to serve as a topological tool, enabling us to determine the conformers' distribution and to differentiate between electron and energy transfer routes.  相似文献   

7.
Based on the generating function formalism, we investigate broadband photon statistics of emission for single dimers and trimers driven by a continuous monochromatic laser field. In particular, we study the first and second moments of the emission statistics, which are the fluorescence excitation line shape and Mandel's Q parameter. Numerical results for this line shape and the Q parameter versus laser frequency in the limit of long measurement times are obtained. We show that in the limit of small Rabi frequencies and laser frequencies close to resonance with one of the one-exciton states, the results for the line shape and Q parameter reduce to those of a two-level monomer. For laser frequencies halfway the transition frequency of a two-exciton state, the photon bunching effect associated with two-photon absorption processes is observed. This super-Poissonian peak is characterized in terms of the ratio between the two-photon absorption line shape and the underlying two-level monomer line shapes. Upon increasing the Rabi frequency, the Q parameter shows a transition from super- to sub- to super-Poissonian statistics. Results of broadband photon statistics are also discussed in the context of a transition (frequency) resolved photon detection scheme, photon tracking, which provides a greater insight in the different physical processes that occur in the multi-level systems.  相似文献   

8.
Line shape functions of a model system are analyzed, describing an oscillator carrying state coupled to background states randomly distributed in energy and with random coupling constants. Depending on the energy distribution functions or the nature of the coupling distribution, different line shape functions, such as the Lorentzian, the Fano, or that related to the nonexponential decay of the Forster type are recovered as limiting cases. Conditions for the range of applicability of a specially introduced mean square coupling approximation are derived. It is shown that the appearance of a Lorentzian line shape does not imply directly a homogeneous decay mechanism and that, on the other hand, commonly accepted conditions for the so-called statistical limit, expressed in terms of an average density and an average coupling, do not necessarily lead to a Lorentzian line shape. This is illustrated analytically through a model with randomly distributed transition dipolar couplings. Other applications relate to spectral diffusion in proteins and to bridged charge transfer.  相似文献   

9.
Modern NMR spectrometers require receivers to work within their linear ranges to maintain high fidelity line shape and peak integration. For better sensitivity, the receiver gain has to be optimized to detect dilute analytes; however, gain compression needs to be avoided. Here, we explore if and how linear receiver performance can be achieved for a couple of representative gain settings on a spectrometer. In the case of slight receiver gain compression, not only will the peak integral be attenuated but a very small line‐shape change can also be observed. Hence, we can resort to resonance integration and line‐shape analysis for gain compression diagnosis. As such, NMR signals, regardless of their observed amplitude difference in frequency domain, can be accurately compared in quantitative analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The zero-phonon line shape of a localized transition in a crystal is treated by use of a general interaction between the local transition and the lattice phonons with the harmonic approximation. The theory is carried out to infinite order perturbation by diagrammatic techniques and is thus valid for arbitrarily large phonon coupling. Within our model it is found that the spectral characteristics of the zero phonon line and their temperature dependence are due to resonant Raman-ike phonon scattering processes which cause a decay of the phase coherence of the excitation. The line shape due to this mechanism is found to be lorentzian, and its width increases with temperature, but is zero at 0 K. The line position is also a function of temperature.  相似文献   

11.
We present here a (67)Zn solid-state NMR investigation of Zn(2+) substituted rubredoxin. The sample has been prepared as both a dry powder and a frozen solution to determine the effects of static disorder on the NMR line shape. Low-temperature experiments have been performed at multiple fields to determine the relative contributions to the NMR line shape from the electric field gradient and the anisotropic shielding tensors. Finally we present the theoretical interpretation of the experimental results utilizing a combined quantum mechanical molecular mechanics (QM/MM) approach. Theory predicts a sizable contribution from anisotropic shielding as compared with previously examined model systems. This is in good agreement with the experimental data.  相似文献   

12.
Doping of individual single-walled carbon nanotubes via noncovalent adsorption of polyethylenimine which converts p-type semiconducting nanotubes into n-type is examined by micro-Raman studies. Distinctively different responses are observed in metallic and in semiconducting nanotubes. Very little or no changes in the radial breathing and the disorder modes are observed upon polymer adsorption on semiconducting carbon nanotubes indicating noncovalent nature of this process. Tangential G-band spectral downshift of up to approximately 10 cm(-)(1) without line broadening is observed for semiconducting tubes suggesting similar magnitude of electron transfer as commonly observed in electrochemical doping with alkali metals. Strong diameter dependence is also observed and can be explained by thermal ionization of charge carriers with activation barrier that scales as the energy gap of the semiconducting nanotubes. In contrast, metallic nanotubes exhibit very different behavior with significant line broadening of the G-band and concurrent enhancement of the disorder mode. In certain cases, initially symmetric Lorentzian line shapes of the G-band features with narrow line widths similar to semiconducting tubes are converted to a broad, asymmetric Breit-Wigner-Fano line shape. Implications on the effects of electron injection and the local chemical environment on the intrinsic line shape of isolated carbon nanotubes are discussed.  相似文献   

13.
Asymmetric line shapes can occur in the transmission function describing electron transport in the vicinity of a minimum caused by quantum interference effects. Such asymmetry can be used to increase the thermoelectric efficiency of molecular junctions. So far, however, asymmetric line shapes have been only empirically found for just a few rather complex organic molecules where the origins of the line shapes relation to molecular structure were not resolved. In the present, work we introduce a method to analyze the structure dependence of the asymmetry of interference dips from simple two site tight-binding models, where one site corresponds to a molecular π orbital of the wire and the other to an atomic p(z) orbital of a side group, which allows us to characterize analytically the peak shape in terms of just two parameters. We assess our scheme with first-principles electron transport calculations for a variety of t-stub molecules and also address their suitability for thermoelectric applications.  相似文献   

14.
For an ensemble of B850 rings of the light-harvesting system LH2 of purple bacteria the linear absorption spectrum is calculated. Using different Markovian and non-Markovian, time-dependent and time-independent methods based on second-order perturbation theory in the coupling between the excitonic system and its surrounding environment as well as the modified Redfield theory, the influence of the shape of the spectral density on the linear absorption spectrum is demonstrated for single samples and in the ensemble average. For long bath correlation times non-Markovian effects clearly show up in the static absorption line shapes. Among the different spectral densities studied is one of the purple bacterium Rhodospirillum molischianum obtained by a molecular-dynamics simulation earlier. The effect of static disorder on its line shapes in the ensemble average is analyzed and the results of the present calculations are compared to experimental data.  相似文献   

15.
Some factors affecting the shape of analytical curves in atomic absorption spectroscopy are considered and the influence of the emission and absorption line profiles is discussed in detail. An empirical equation expressing the analytical curves for different ratios of emission line width to absorption line width is given. The possible influence of resonance line broadening and resonance line shift in atomic absorption flame photometry is also discussed.  相似文献   

16.
We report a computer-simulation study of the free-energy barrier for the nucleation of pores in the bilayer membrane under constant stretching lateral pressure. We find that incipient pores are hydrophobic but as the lateral size of the pore nucleus becomes comparable with the molecular length, the pore becomes hydrophilic. In agreement with previous investigations, we find that the dynamical process of growth and closure of hydrophilic pores is controlled by the competition between the surface tension of the membrane and the line tension associated with the rim of the pore. We estimate the line tension of a hydrophilic pore from the shape of the computed free-energy barriers. The line tension thus computed is in a good agreement with available experimental data. We also estimate the line tension of hydrophobic pores at both macroscopic and microscopic levels. The comparison of line tensions at these two different levels indicates that the "microscopic" line tension should be carefully distinguished from the "macroscopic" effective line tension used in the theoretical analysis of pore nucleation. The overall shape of the free-energy barrier for pore nucleation shows no indication for the existence of a metastable intermediate during pore nucleation.  相似文献   

17.
Charge-Coupled Device (CCD) detection of emission from a high voltage atmospheric pressure spark has shown behaviors previously not detectable. These include variation in the distance of excitation propagation from the cathodic electrode from spark to spark, even when the electrode surface is mechanically well defined. Line shape for emission from single sparks was observed, and the change in line shape on successive sparks during “burnout” documented. Spectral line shape as a function of time and space was monitored with a reliably linear two-dimensional detector. Observed behavior is in contrast to accepted models, in that previous integrated data are seen to be summations over qualitatively different sequential sparks, rather than averages of identical sparks.  相似文献   

18.
In isotactic poly(methyl methacrylate) (PMMA), we investigate the dynamics of the ester methyl groups by means of deuteron magnetic resonance (DMR) in a deuterated sample. We find that the motion of the CD(3)-group affects the deuteron spin-lattice relaxation as well as the DMR line shape in a characteristic way. Quadrupolar order spin lattice relaxation measurements between T=291 K and T=70 K reveal a broad temperature dependent probability distribution of autocorrelation times tau(c) for the 2pi/3 reorientation. This broad distribution corresponds to a temperature independent Gaussian distribution of activation energies rho(E(a)) with variance sigma(E(a) )=13.8+/-0.5 meV (1.33 kJ/mol). The line shape transition between T=70 K and T=23 K is explained with the freezing in of the methyl group reorientation. By comparing our results in an 88% isotactic sample with results obtained from a 50% syndiotactic, 30% atactic, and 20% isotactic sample of a previous investigation, we demonstrate the higher local order of the 88% isotactic sample, which corresponds to a ratio of 1.6 in the relative width sigma(E(a) )/E(a) of the E(a) distribution. We show that different stereospecific forms of PMMA can be easily distinguished by the characteristics of their line shape transition between T=70 K and T=23 K.  相似文献   

19.
The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities.  相似文献   

20.
We discuss the hyperfine effect on the shape of rotational spectral lines of DCO(+) broadened by collisions with helium. Hyperfine scattering matrix is calculated by the recoupling technique from the spin-free scattering matrix which is obtained by close-coupling calculations and by a previously tested potential. Line shape is calculated for different rotational transitions, perturber density values, and collisional energies. As forecast by a semiclassical treatment and contrary to what may happen for a symmetric top absorber, hyperfine effects are small for a linear absorber. In our case they are of about 2%. We could also verify that the two hyperfine effects on the line shape, modification of resolved components and collisional coupling between them, cancel each other at high values of helium density when hyperfine structure collapses into a single line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号