首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
捷联惯导系统的空中标定方法   总被引:5,自引:1,他引:5  
从工程实用和维护的角度出发,提出了一种针对机载捷联式系统的空中标定方法。该方法依据捷联惯导系统级标定的基本原理,使用卡尔曼滤波作为估计手段,惯性器件常值漂移、刻度系数误差及惯导系统基本误差项作为状态量,依据外部GPS信息作为观测基准,通过设定的飞行机动动作对各待标定误差项进行激励。仿真卡尔曼滤波结果表明,依据飞机实际运动过程设计的简单飞行轨迹即可以实现对所有误差项的有效激励,各误差项随飞行过程进行逐步收敛。这种系统级空中标定方法不需要飞机作特殊的机动动作,在实际工程中易于实现,且经过一个架次的飞行就可以对惯导系统进行一次标定补偿。  相似文献   

2.
捷联惯导现场最优标定方法研究   总被引:5,自引:1,他引:5  
针对静基座捷联惯导的初始对准和标定,提出了一种基于虚拟噪声的现场最优标定方法,即两步估计法。同多位置对准方法相比,其特点是结构简单、省时、易于实现,既能保持一定的姿态精度,又能大大降低导航和定位误差,特别适用于短时间、低中精度导航系统。  相似文献   

3.
针对激光陀螺具有标度因数稳定、漂移误差变化小的特点,建立了适合激光陀螺捷联惯导系统的陀螺及加速度计组件简化误差参数模型,推导出了适合激光陀螺捷联惯导系统外场快速自标定的误差模型,设计了激光陀螺捷联惯导系统9位置系统级标定方法,并通过试验验证了该方法可快速准确的标定出加速度计组件的标度因数、安装误差、零偏及激光陀螺安装误差等15个主要参数,方法简单易行。  相似文献   

4.
光纤捷联惯导系统高阶误差模型的建立与分析   总被引:2,自引:0,他引:2  
针对多位置标定算法中利用的陀螺和加表的误差模型,在捷联惯导系统误差传播方程中,考虑陀螺和加表的标度因数误差和安装误差,建立了一种高阶误差模型。为了评价该模型的准确性,将其与不考虑标度因数误差和安装误差的模型比较,设计了系统静态和动态仿真实验。在系统静态仿真中,分别加入陀螺漂移和加表安装误差,而在动态仿真中同时加入各项误差项,求取以这些误差项为初值的模型微分方程的解,使其与惯导系统输出误差进行比较。仿真结果发现,建立的高阶误差模型比不考虑标度因数误差和安装误差的模型精度高出约三个数量级。  相似文献   

5.
激光捷联惯组的双轴位置转台标定仿真   总被引:2,自引:4,他引:2  
研究了利用双轴位置转台标定时,水平基准误差和北向基准误差对激光捷联惯组(LSIMU)标定精度的影响。首先建立了LSIMU标定模型和生成惯性器件信息的仿真算法,接着设计了LSIMU标定方案和数据处理方法,最后对LSIMU标定进行仿真和分析。仿真结果表明:水平基准误差为0.4’时,加速度计标定误差将达到116×10^-6;当北向基准误差大于5°时,陀螺标定误差将超过0.0001。  相似文献   

6.
激光陀螺捷联惯导系统多位置标定方法   总被引:1,自引:0,他引:1  
在建立惯性仪表简化误差模型的基础上,提出了一种多位置标定方法.该方法充分考虑标定条件、设备以及时间等因素,设计了一种多位置连续转动标定方案,充分激励惯性仪表各项误差参数,从而建立起所有误差参数与系统导航误差之间的关系,通过测量每个位置静态导航状态下的速度误差,采用最小二乘估计,全面辨识出所有21个误差参数.理论分析和实验结果表明,与传统标定方法相比,该方法对标定设备要求低,无需北向基准,实现简单方便,在较短的时间内就可以一次标定出惯性仪表所有21个误差参数,标定精度与基于精密转台的标定精度相当,具有较强的工程实用性.  相似文献   

7.
为满足某型号挠性捷联惯性导航系统批量生产的需要,设计了挠性捷联惯导系统自动标定与测试系统。研究了目前惯性测量组件自动测试系统的发展情况;针对捷联惯导系统的特点,设计了监控计算机与捷联惯导系统之间的通信协议,实现了基于串口的通信机制;分别以惯性测量组件自动测试系统和独立的转台系统为基础,在不增加硬件设备的条件下,利用串口通信机制实现了捷联惯导系统标定与测试过程的自动化,包括标定流程控制、数据记录、标定结果计算和标定参数装订。该系统能够满足捷联惯性导航系统”自动标定与测试的要求,且充分利用了现有设备,降低了自动标定系统的开发成本。  相似文献   

8.
系统级双轴旋转调制捷联惯导误差分析及标校   总被引:7,自引:3,他引:4  
旋转调制技术可以调制惯性器件常值误差,有效提高惯导系统的长航时导航精度。出于一种旋转调制式捷联惯导系统的研制需求,从旋转调制式捷联惯导的基本原理出发,提出了一种系统级双轴旋转调制式捷联惯导工程实现方案,并对其系统误差特性进行了深入的分析及仿真,找出了影响系统长航时导航精度的误差源。基于此。为了能仅利用系统自身旋转机构就可对主要误差源进行估计补偿,提出了一种系统级自标校方案。通过计算机仿真表明:此方案可以对影响系统长航时精度的主要误差项进行精确估计,是一种有效可行的系统级标校方案。  相似文献   

9.
激光捷联惯导系统的一种系统级标定方法   总被引:4,自引:1,他引:4  
根据陀螺和加速度计的输出误差模型,从惯性导航基本方程出发推导了捷联惯导系统的系统级标定的一种误差参数标定模型,明确了该模型成立的条件,分析了该模型下惯性仪表24项误差参数的可辨识性,从而解释了已有文献未将惯性仪表24个误差参数完全辨识的原因,完善了该理论的完整性,并且提出了设计多位置翻滚实验的位置编排原则,给出了能够辨识出惯性仪表24项误差参数的标定方法.根据该位置编排原则可以找到多组可行的位置编排使得惯性仪表误差参数是可辨识的.该标定方法简单易行.  相似文献   

10.
从工程实用角度出发,提出了一种在初始方位已知的情况下同时进行姿态估计和仪表误差标定的迭代计算方法。半实物仿真结果表明:该方法在占用一定初始对准时间的条件下能在线补偿仪表误差,并能显提高惯导系统导航精度,效率较高。  相似文献   

11.
惯性测量单元(IMU)是捷联惯性导航系统的核心设备,IMU的精度直接影响捷联惯性导航系统的精度。标定精度和速度是评价IMU标定方法的主要指标。传统标定方法是先进行温度补偿,再利用高精度三轴转台进行位置和速率实验,共需耗费约4天时间。虽然能够保证IMU的标定精度,但该方法复杂耗时。为改善复杂耗时的传统标定方法并保证标定精度,以便于批量生产,提出了基于双轴转台的8位置系统级标定方法。该方法基于27维状态向量的卡尔曼滤波器,以导航速度误差为观测量。该方法基于带温箱双轴转台设计,每个温度点需40 min进行标定。仿真和试验结果表明,该方法能够标定21个IMU误差参数,且该标定方法与传统标定方法相比标定时间更短,导航精度更高。  相似文献   

12.
研究了利用三轴转台标定时,转台角位置基准误差对激光捷联惯导系统标定精度的影响.从理论上推导了转台角位置基准误差与激光捷联惯导系统标定结果之间的数学关系,得到以下结论:北向以及水平基准误差对陀螺仪零偏与标度因数的标定影响较小,对陀螺安装误差系数的标定影响较大,当误差角为1°时,标定误差将达到0.33×10-3 (′/s)/P;北向基准误差对加速度计标定结果的影响很小,而水平基准误差对加速度计的标定影响较大.仿真与标定实验均验证了理论分析的正确性,因此标定实验前转台的调平、对北工作是必不可少的.  相似文献   

13.
重力梯度旋转平台调制实验时要求旋转平台台面的水平失准角在一定范围之内。使用两位置正交方法对双轴转台进行调平时,能保证正交两个方向上水平精度,但无法保证在多个方向上的水平精度。对此,提出了一种八位置调平方法,即将整周360°分为八个位置,两个相邻位置的夹角为45°,依次测量八个位置的水平失准角,取最大值和最小值之和的二分之一作为中值,每个位置失准角与中值求差,通过差值的符号并结合八位置图确定调高或调低相应的地脚。同时,给出了一种通过匀速旋转调制来估算台面最大水平失准角的方法。实验表明:在目前实验条件下,八位置调平方法能将转台台面最大失准角控制在3″以内,旋转调制估算的水平失准角为2.9″。  相似文献   

14.
激光陀螺惯性测量单元系统级标定方法   总被引:1,自引:0,他引:1  
传统的分立标定方法必须依靠高精度的转台提供姿态基准,不满足带减振器的惯性测量单元(IMU)和现场标定需求.首先建立了附加约束条件的陀螺和加速度计安装坐标系数学模型,根据陀螺和加速度计的输出误差方程,从惯性导航基本误差方程出发推导了惯性测量单元的系统级误差参数标定Kalman滤波模型,该模型包含了陀螺和加速度计零偏、比例因子、安装误差在内共21维标定误差状态变量,且仅以速度解算误差为观测量.依据所建立的模型和设计的标定路径对此系统级标定方法进行了仿真,仿真结果表明,陀螺和加速度计零偏估计精度分别优于0.005°/h和0.005 mg,安装误差估计精度优于1″,比例因子误差优于1ppm,满足高精度惯导系统的标定需求.  相似文献   

15.
针对激光陀螺惯性测量组件在传统的分立式标定中受橡胶减震器影响的问题,从系统的角度对激光陀螺惯性测量组件的标度因数误差、安装误差传播规律进行分析。通过分别绕三只陀螺敏感轴转动激发激光陀螺的标度因数误差、安装误差,通过三只加速度计敏感轴分别指天激发加速度计的标度因数误差、安装误差和零位,从而完成激光陀螺惯性测量组件的系统级标定。在未进行温控及温补的情况下,陀螺仪标度因数误差重复性在3.5×10~(-6)以内,安装误差重复性在3″以内,加速度计标度因数误差和零位在其性能指标内,安装误差在4.5″以内。试验结果表明,该方法满足高精度、长期稳定性好的惯导系统工程应用要求。  相似文献   

16.
惯性元件参数的长期稳定决定着惯导系统的精度,目前对于激光陀螺捷联惯导系统(RLG-SINS)主要是采用系统级旋转调制技术来实现高精度导航能力,同时系统级旋转也提高了初始对准精度以及惯性元件误差的可观测性。针对激光陀螺惯导系统惯性元件误差项的特点,同时结合分立式标定与系统级标定各自的优势,设计了一种水平阻尼模式下的Kalman滤波方案,利用双轴旋转机构,通过观测导航位置误差来实现初始对准以及部分惯性元件误差参数的标定,可以有效地减小惯性元件逐次启动误差对导航精度的影响。仿真结果表明,系泊状态零速度阻尼模式下工作4 h,可以标定出石英加速度计标度因数误差、零偏与激光陀螺零偏,共计9项误差参数。加速度计零偏估计误差小于2%,陀螺零偏估计误差小于8%,误差估计精度满足高精度惯性导航要求,该方法具备一定的工程实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号