共查询到16条相似文献,搜索用时 94 毫秒
1.
用手选富集与离心分离相结合的方法,从两种全硫含量相近的新西兰煤(NXL;St,ad=1.84%)和山西煤(SX;St,ad=1.80%)中分离出高纯度镜质组。在高纯Ar气氛下,分别制备了300、500、700和1 000℃下的镜质组焦。用FT-IR研究了两种镜质组中的脂肪氢、芳香氢随温度的变化,结果表明,SX镜质组中脂肪氢的相对含量较高,在热解过程中活性高于同温度下的NXL镜质组;两种镜质组中的脂肪氢相对含量都随温度升高而降低,温度高于500℃时,SX镜质组中脂肪氢相对含量基本不变,当温度高于700℃时,NXL镜质组中的脂肪氢相对含量基本保持不变;热解过程芳香氢都表现出先增大后减小的趋势。用XPS研究了镜质组中的有机硫含量及形态随温度的变化,结果表明,SX镜质组中易分解的有机硫化物较多,在300℃以下即可分解完全;NXL镜质组中的有机硫化物分解完全在700℃左右,两种镜质组中的噻吩类硫的含量都随热解温度的升高而增加,砜类硫的含量随热解温度的升高而降低。 相似文献
2.
煤中有机硫形态结构和热解过程硫变迁特性的研究 总被引:10,自引:1,他引:10
利用热解 质谱并结合固定床热解反应装置,对煤中有机硫的形态主其对加氢热解过程 变迁特性的影响,进行了较系统的研究。结果表明,煤中有机硫的形态结构在褐煤中主要以脂肪族、芳香族硫化物为主,而在 煤中则主要以各种不同芳构化程度的噻吩结构为主,初步表明煤中有机硫形态结构随煤变质程度的变迁呈较强的连续递变性。煤热解过程中硫在呼产物中的变迁和分布与煤中有机硫的形态结构特点密切相关。较高芳构化噻吩结构不完全的氧 相似文献
3.
五彩湾煤镜质组与惰质组在热解中的相互作用 总被引:1,自引:0,他引:1
五彩湾煤镜质组与惰质组在热解中的相互作用 《燃料化学学报》2015,43(11):1295-1302
以五彩湾煤镜质组、惰质组为研究对象,建立两种不同的体系,镜质组与惰质组无相互作用体系(A)和相互作用体系(B)。利用热重技术(TG)和傅里叶变换红外技术(FT-IR),将两体系的热解固体产物进行红外分析。结果表明,在300~450℃,体系B的脂肪氢含量高于体系A,表明镜质组与惰质组之间发生了烷基自由基转移反应,芳氢的含量也是体系B多于体系A,这说明镜质组与惰质组之间同时发生了芳构化作用,随温度升高,镜质组生成少量氢自由基与惰质组发生侧链取代反应;在500~700℃,体系B的脂肪氢含量和芳氢含量均低于体系A,表明此时镜质组与惰质组之间发生缩聚反应及缩合反应;750~800℃时,脂肪氢和芳香氢含量均为体系B大于体系A,说明体系B中,镜质组产生较多的氢自由基与惰质组大分子芳香结构发生氢化反应,同时与惰质组发生侧链取代反应;850~900℃时,镜质组与惰质组之间进一步发生多环芳香缩合反应。 相似文献
4.
随着优质煤资源的消耗,高硫煤的清洁高效转化备受关注,尤其是高硫炼焦煤中有机硫的调控至关重要。煤热解过程中,有机硫的变迁始于煤大分子结构中C–S键的断裂和含硫自由基的稳定,活性氢/氧是影响其转化赋存形态的重要因素。研究表明,煤在富氢/氧氛围下热解或与生物质、含氧有机物共热解的体系中,含有的活性氢/氧可弱化有机硫的C–S键,促进其断裂并及时结合生成的含硫自由基,促进煤中硫分向气相变迁,减少了含硫自由基与煤基质的二次反应。同时,高挥发分煤与高硫煤共热解过程中,相对丰富的挥发分中的活性氢/氧也会影响高硫煤中有机硫的变迁,降低焦炭中的硫含量,这为煤中硫分定向调控提供了理论基础。 相似文献
5.
用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律 总被引:2,自引:0,他引:2
用XPS研究新西兰高硫煤热解过程中氮硫官能团的转变规律 《燃料化学学报》2013,41(11):1287-1293
选择一种高硫新西兰煤(NXL)作为研究对象,高纯Ar气氛中,以5℃/min的升温速率在管式炉中热解,热解终温为300~1 000℃。用XPS研究煤及不同温度下半焦中氮、硫的赋存形态。将N 1s谱图用Lorentzian-Gaussian拟合分为四个峰:N-6(398.8±0.4)eV、N-5(400.2±0.3)eV、N-Q(401.4±0.3)eV和N-X(402.9±0.5)eV;S 2p谱图分为六个峰:硫铁矿(162.5±0.3)eV、硫化物(163.3±0. 4)eV、噻吩(164.1±0.2)eV、亚砜(166.0±0.5)eV、砜(168.0±0.5)eV和硫酸盐硫(169.5±0.5)eV。结果表明,煤中氮元素的主要存在形式是吡啶、吡咯、质子化吡啶和氮氧化物;低于600℃,半焦中的氮元素主要以吡啶和吡咯形式存在;随温度的升高,吡咯向吡啶转化;当温度超过900℃,氮氧化物这一形态消失。该煤中的硫以有机硫为主,其中,噻吩硫占50%以上;随着热解温度的升高,煤中的硫铁矿硫逐步转化为无机硫化物,600℃时分解完全。 相似文献
6.
利用固定床反应器研究了哈密煤温和液化固体产物(MLS)在热解过程中含硫气体的释放规律以及不同形态硫的变迁规律,并分析了矿物质对硫变迁规律的影响。结果表明,在实验考察的条件范围内,MLS热解过程中大部分的硫残留在半焦中,仅有不到10%的硫迁移到焦油中或转化为含硫气体逸出。热解生成的含硫气体以H2S为主,当热解温度为400℃时H2S的逸出速率达到最大。通过改进方法测定了M LS及其热解半焦中各种形态硫的含量,发现M LS热解过程中以硫化物硫和有机硫的分解和转化为主。随着热解温度的升高,MLS中有机硫逐渐分解并以含硫气体的形式逸出;当热解温度低于600℃时,M LS中硫化物硫逐渐转化为含硫气体、有机硫和少量的黄铁矿硫;当热解温度高于600℃时,M LS中碱性矿物质吸收气相中的H2S转化为硫化物硫,硫化物硫缓慢增加。醋酸酸洗可以保留M LS中大部分的硫化物硫,且酸洗后M LS热解生成的H2S逸出速率增大,峰温向低温方向移动;当热解温度高于600℃时,有机硫和硫化物硫的脱硫反应速率降低,并且M LS中的碱性矿物质与H2S反应生成金属硫化物,导致H2S逸出速率明显降低。 相似文献
7.
哈密煤温和液化固体产物热解过程中硫的变迁规律 《燃料化学学报》2003,48(9):1025-1034
利用固定床反应器研究了哈密煤温和液化固体产物(MLS)在热解过程中含硫气体的释放规律以及不同形态硫的变迁规律,并分析了矿物质对硫变迁规律的影响。结果表明,在实验考察的条件范围内,MLS热解过程中大部分的硫残留在半焦中,仅有不到10%的硫迁移到焦油中或转化为含硫气体逸出。热解生成的含硫气体以H2S为主,当热解温度为400℃时H2S的逸出速率达到最大。通过改进方法测定了MLS及其热解半焦中各种形态硫的含量,发现MLS热解过程中以硫化物硫和有机硫的分解和转化为主。随着热解温度的升高,MLS中有机硫逐渐分解并以含硫气体的形式逸出;当热解温度低于600℃时,MLS中硫化物硫逐渐转化为含硫气体、有机硫和少量的黄铁矿硫;当热解温度高于600℃时,MLS中碱性矿物质吸收气相中的H2S转化为硫化物硫,硫化物硫缓慢增加。醋酸酸洗可以保留MLS中大部分的硫化物硫,且酸洗后MLS热解生成的H2S逸出速率增大,峰温向低温方向移动;当热解温度高于600℃时,有机硫和硫化物硫的脱硫反应速率降低,并且MLS中的碱性矿物质与H2S反应生成金属硫化物,导致H2S逸出速率明显降低。 相似文献
8.
选取遵义(ZY)原煤及其热解半焦,采用常压程序升温还原—质谱法(AP-TPR-MS)与化学法相结合考察了温度和气氛对热解过程中硫变迁行为的影响。结果表明,对于ZY煤而言,黄铁矿和不稳定有机硫除在氮气气氛下500 ℃时热解不能全部分解外,在其他条件下热解时都可以分解。1%氧气对ZY煤中稳定的有机硫的分解有很强的促进作用,不仅可以脱除稳定的有机硫,还可以使更稳定的有机硫断裂生成次稳定的有机硫,在随后的AP-TPR-MS实验过程中,这部分硫在较低的温度下逸出。合成气和1%氧气在700 ℃时与氢气有着相同的脱硫效果。 相似文献
9.
烟煤快速加氢热解的研究——Ⅴ.煤和半焦中有机硫化学形态剖析 总被引:8,自引:3,他引:8
采用XPS技术分析了我国以烟煤为主的七种煤样以及对应的快速加氢热解半焦中有机硫的化学形态。煤中有机硫一般为脂肪类硫与噻吩类硫,其谱位置分别在163.1-163.5eV和164.1-164.5eV之间。噻吩类硫的相对含量随煤化程度而增大。半焦中一般只残留噻吩类硫,谱峰位置在164.1-164.5eV,与对应煤中噻吩硫的谱峰位置是一致的。在加氢热解过程中全部脂肪类硫和部分噻吩类硫被脱除,脂肪类硫表现出很高的加氢反应活性。 相似文献
10.
实验选取六枝(LZ)原煤及其在固定床热解所得半焦,采用常压程序升温还原 质谱法(AP-TPR-MS)与化学法相结合考察温度和气氛对固定床热解过程中硫变迁行为的影响。对于LZ煤而言,经氮气气氛500℃热解后,只能使煤中部分不稳定有机硫分解,黄铁矿硫却不能分解;而经氮气气氛700℃热解后可以使不稳定有机硫和黄铁矿硫全部分解。合成气气氛在500℃以前煤中的不稳定有机硫和黄铁矿硫就能全部分解,且随着温度的升高,合成气表现出与氢气相近的脱硫活性。1.0% O2-N2对于六枝煤并没有明显的脱硫效果,这与氮气气氛相差不大。 相似文献
11.
利用红外、拉曼、热重及XANES等技术对不同煤阶高硫炼焦煤的化学结构、原煤及焦样形态硫分布进行了准确判定,对煤中化学结构及硫赋存形态与硫的热变迁行为进行了关联分析。结果表明,高硫炼焦煤中硫的热变迁行为不仅与硫赋存形态有关,而且受化学结构不同的高硫炼焦煤热解挥发分释放特性的影响。较低煤阶高硫炼焦煤中脂肪结构热分解产生大量挥发分,且挥发分释放温区较宽,形态硫分解产生的活性硫与挥发分中富氢组分相结合,形成更多的含硫气体转移到气相中,提高了热解脱硫率,焦炭体相中噻吩硫相对含量高于表面,硫化物硫则与之相反。煤化程度升高,煤中稳定噻吩类硫含量增多,挥发分释放量减少,热解脱硫率降低,且形态硫在焦炭体相与表面的分布差异不明显。无机硫脱除率与黄铁矿硫分解程度直接相关,热解过程中也将形成部分新的无机硫滞留于焦中。煤结构及有机硫的赋存形态决定了有机硫脱除率,煤阶升高时有机硫脱除率明显降低。 相似文献
12.
利用重介质分选法分别将两种高有机硫炼焦煤分选为密度范围不同的五个组分。采用X射线光电子能谱仪(XPS)、核磁共振波谱仪(13C NMR)和热解质谱联用技术(Py-MS)探究不同分选组分中硫的赋存形态及其热变迁行为。结果表明,不同分选组分中硫的分布、赋存形态及其所处化学环境存在显著差异。有机硫主要分布在低密度组分(D1)中,且以噻吩硫的形式存在;无机硫作为矿物质组分主要分布于高密度组分(D5)中。随着分选组分密度的增大,其脂肪碳的比例降低,芳香碳的比例增加,D1中硫醇、硫醚等硫化物的含量明显增加。热解过程中脂肪碳结构裂解生成的挥发分促进含硫气体的释放,进而提高了D1的脱硫效率,D5中硫的热变迁行为则主要受煤中矿物质的影响。 相似文献
13.
利用XANES技术研究了酸处理对义马煤的比表面积、体相及表面硫形态分布和热解过程中硫变迁行为的影响。结果表明,由于酸处理过程中部分镶嵌于有机质中的矿物质被脱除导致部分闭合孔打开,煤的比表面积有所增大。HCl-HF和HCl-HF-HNO3处理脱除了煤中大部分矿物质和无机硫,由于HNO3的强氧化性,YMN中亚砜和砜硫化物的相对含量均高于YMR和YMD。相比煤样体相,酸处理过程对表面形态硫的分布产生了更为明显的影响。酸处理煤样热解含硫气体释放量减少,但由于大部分碱性矿物质的脱除和煤中易分解形态硫相对含量的增加,含硫气体释放率增加。不同形态硫之间的内部转化使得酸处理煤焦中主要形态硫的分布更为均匀。通过HCl-HF-HNO3处理可以有效地脱除煤中矿物质及无机硫,并改变煤中形态硫分布,从而为高灰分、富含黄铁矿的高硫煤的利用提供指导。 相似文献
14.
添加CaO对煤热解过程中砷和硫迁移转化的影响 《燃料化学学报》2017,45(2):147-156
利用高频炉反应器在800-1 200℃对添加质量分数10%CaO的云南镇雄煤(YNZX)进行了快速热解实验,采用连续化学提取、X射线衍射(XRD)、扫描电子显微镜-能谱(SEM-EDX)和X射线光电子能谱(XPS)等分析手段,考察了CaO添加对煤快速热解过程中砷和硫迁移转化的影响。结果表明,CaO能显著抑制砷与硫的释放。CaO对砷释放的抑制率在800℃时最高达41.19%,对硫释放的抑制率在1 000℃时最高,为39.89%;两者的抑制率呈负相关。As-Ca复合物和CaS的形成是砷与硫释放率降低的主要原因;添加CaO后,As-Ca复合物的生成使残渣态砷含量增加,CaS的形成使硫化物结合态砷含量减少。热解后硫元素在CaO表面富集,占据更多的吸附活性位,对砷的固定产生抑制作用;添加CaO后焦中硫仍主要以硫化物的形式存在,亚硫酸盐的含量有所增加。 相似文献
15.
为深入了解高硫石油焦在工业应用高温工况下的热解过程以及硫的析出特性,本研究采用高温固定床对青岛高硫石油焦进行了高温(900-1500℃)热解实验,考察了高温热解下热解气体释放规律,热解过程中焦的物理孔隙结构以及化学特性的演变,并对热解过程中硫的析出与演变特性进行了研究。结果表明,随着热解温度的升高,石油焦热解气中的H2含量逐渐增加,CO含量变化不大,CH4与CO2含量则逐渐下降;热解焦的比表面积与平均孔隙均随热解温度的升高有所增加,颗粒的表面形态则受温度影响较小;热解温度的升高会降低石油焦中含有的非定型碳比例,提高其微晶结构的有序性以及石墨化程度;热解焦的气化活性随热解温度的升高先降低后升高,在1100℃附近有最小值; 1500℃高硫石油焦硫元素析出率达81.34%,仅少量硫醇类有机硫和噻吩环内的硫元素得以残存。 相似文献
16.
加压热解气氛对碳酸钾催化煤热解过程中硫迁移的影响 《燃料化学学报》2016,44(11):1287-1296
在加压热解装置上,考察了碳酸钾及热解气氛对煤热解过程中硫分布及其形态的影响。结果表明,碳酸钾通过捕获H_2S增加了半焦硫含量,同时可将煤焦表面活化,导致煤中有机质与黄铁矿分解产生的活泼硫结合形成新的有机硫。氢气能促进煤中硫的脱除,但是碳酸钾存在下热解释放的硫一部分以K_2S的形式固定于半焦中。水蒸气可显著促进煤中黄铁矿的分解,同时可与煤焦中的K_2S反应,降低半焦中的硫含量。两段床催化气化炉中,碳酸钾催化剂经热解后不影响其对煤焦的催化性能。 相似文献