首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
Ni2(PO2NH)4 · 8 H2O is isotypic with M2(PO2NH)4 · 8 H2O (M = Mg, Mn, Co, Zn) and crystallizes in the space group P21/c, Z = 2, with a = 641.25(1), b = 1041.42(1), c = 1278.18(2) pm and β = 104.243(1)°. The structure is composed of Ni2+ and (PO2NH)44? ions as well as crystal water molecules. The P4N4 rings of the (PO2NH)44? ions exhibit a slightly distorted chair–2 conformation, which has been described by torsion angles, displacement asymmetry parameters and puckering parameters. The tetrametaphosphimate anions are connected forming layers. These layers are linked solely by hydrogen bonds, forming a three‐dimensional network.  相似文献   

2.
15-甲基-双环[10,3,0]十五碳-1(12)-烯-13-酮的单晶属空间群P2_1/n,晶胞参数:a=0.4838(1)nm,b=1.3949(2)nm,c=2.1645(4)nm,β=92.07(1)°,Z=4.其中平面五员环呈刚性。另一个含烯十二员环的实际构象与分子力学计算的最稳定构象一致。  相似文献   

3.
4.
Single crystals of Li4(PO2NH)4 · 4 H2O were obtained by dissolving LiOH and H4(PO2NH)4 · 2 H2O in water and subsequent precipitation with acetone and ethanol followed by slow evaporation of the solvents. The structure of Li4(PO2NH)4 · 4 H2O was solved by single‐crystal X‐ray methods ( (No. 2), a = 489.2(2), b = 853.2(2), c = 880.5(2) pm, α = 101.71(3), β = 102.39(3), γ = 94.88(3)°, Z = 1). The structure is composed of LiO4 tetrahedra and (PO2NH)44? ions. The P4N4 rings of the anions exhibit a slightly distorted chair–1 conformation, which is supported by IR data and has been described by torsion angles, displacement asymmetry parameters and puckering parameters. Via Li+ ions and hydrogen bonds, the tetrametaphosphimate anions are connected forming a three‐dimensional network.  相似文献   

5.
Mg2(PO2NH)4 · 8 H2O ( 1 ), Mn2(PO2NH)4 · 8 H2O ( 2 ), Co2(PO2NH)4 · 8 H2O ( 3 ) and Zn2(PO2NH)4 · 8 H2O ( 4 ) were obtained as microcrystalline powders by combining aqueous solutions of K4(PO2NH)4 · 4 H2O and MX2 · y H2O (M = Mg, Mn, Co, Zn; X = Cl, NO3). Single crystals were obtained by crystallization in gelatine gels in U‐tubes or test‐tubes. 2 and 4 were characterized by thermogravimetry and 4 was additionally characterized by temperature dependend in situ powder diffractometry. The structures of 1 , 2 , 3 and 4 were found to be isotypic and were solved by single‐crystal X‐ray methods: P 21/c, Z = 2 ( 1 : a = 645.4(2), b = 1050.1(2), c = 1283.3(3) pm, β = 104.66(3)°; 2 : a = 648.7(2), b = 1063.1(2), c = 1310.8(3) pm, β = 103.93(3)°; 3 : a = 643.3(2), b = 1049.0(2), c = 1286.7(3) pm, β = 104.28(3)°; 4 : a = 644.18(5), b = 1049.22(7), c = 1282.43(8) pm, β = 104.122(6)°). The structure is composed of MO6 octahedra and (PO2NH)44— anions. The P4N4 rings of the (PO2NH)44— anions exhibit a slightly distorted chair conformation, which is supported by IR data and has been described by torsion angles, Displacement Asymmetry Parameters and Puckering Parameters. Via M2+ ions and hydrogen bonds, the tetrametaphosphimate anions are connected forming layers perpendicular to [100]. These layers are connected by hydrogen bonds.  相似文献   

6.
Synthesis, Crystal Structure, and Properties of Tetrasodium Bis(trimetaphosphimato)cuprate(II) Decahydrate, Na4{Cu[(PO2NH)3]2} · 10 H2O Tetrasodium bis(trimetaphosphimato)cuprate(II) decahydrate, Na4{Cu[(PO2NH)3]2} · 10 H2O, was obtained by the reaction of an aqueous solution of Na3(PO2NH)3 · 4 H2O with Cu(NO3)2 · 3 H2O (molar ratio 2 : 1). The structure of Na4{Cu[(PO2NH)3]2} · 10 H2O ( 1 ) was solved by single‐crystal X‐ray methods (P 1, a = 912.51(6), b = 932.14(6), c = 966.10(6) pm, α = 94.840(5), β = 108.652(6), γ = 118.588(6)°, Z = 1). The P3N3 rings of the trimetaphosphimate ions exhibit a slightly distorted sofa conformation. The conformation of the anions have been analysed using torsion angles, displacement asymmetry parameters, and puckering parameters. The trimetaphosphimate ions act as bidentate ligands of Cu2+. With additionally coordinated water molecules, anionic complexes {Cu[(PO2NH)3]2 · 2 H2O}4– are formed. In the crystal these complexes are interconnected by N–H…O und O–H…O hydrogen bonds and they coordinate the Na+. Thus, a three‐dimensional network is formed.  相似文献   

7.
Crystal structures of four different di-aryl-1,3,4-oxadiazole compounds (aryl = 2-pyridyl-, 3-pyridyl-, 2-aminophenyl-, 3-aminophenyl-) are determined. Crystallization of di(2-pyridyl)-1,3,4-oxadiazole yielded monoclinic and triclinic polymorphs. The structures are characterized by the occurrence of π–π interactions. Additionally, in case of the aminophenyl compounds intra- as well as intermolecular hydrogen bonds are found that influence the packing motif as well. Since these molecules are often used as ligands in metal–organic complexes similarities and differences of the molecular conformation between the molecules in the pure crystals and that of the ligands in the complexes are discussed.  相似文献   

8.
Bicovalently linked tetraphenylporphyrins bearing dioxypentane groups at the opposite (transoid, H4A) and adjacent (cisoid, H4B) aryl groups have been synthesised. Protonation of the free-base porphyrins leads to fully protonated species H8A4+/H8A4+ accompanied by expansion of cavity size of the bisporphyrins. The electrochemical redox studies of these porphyrins and their Zinc(II) derivatives revealed that the first ring oxidation proceeds through a two-electron process while the second ring oxidation occurs at two distinct one-electron steps indicating unsymmetrical charge distribution in the oxidized intermediate. The axial ligation properties of the Zinc(Il) derivatives of H4A/H4B with DABCO and PMDA investigated by spectroscopic and single crystal X-ray diffraction studies showed predominant existence of 1: I complex. The Zn2A.DABCO complex assumes an interesting eclipsed structure wherein DABCO is located inside the cavity between the two porphyrin planes with Zn-N distances at 2.08 and 2.22 ?. The Zn atoms are pulled into the cavity due to coordination towards nitrogen atoms of DABCO and deviate from the mean porphyrin plane by 0.35 ?. The electrochemical redox potentials of the axially ligated metal derivatives are found to be sensitive function of the relative coordinating ability of the ligands and the conformation of the hosts.  相似文献   

9.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

10.
Weak interactions involving fluorine have been analyzed in the structure of 6-methoxy-1,2-diphenyl-1,2,3,4-tetrahydroisoquinoline with fluorine substitution at para-, meta- and ortho- positions, respectively, on the 1-phenyl ring. The packing modes in the crystalline lattice as determined by X-ray diffraction techniques generate motifs via F?F, C-H?F and C-F?π interactions. The three structures as compared to the parent compound depict conformational changes in the saturated tetrahydroisoquinoline moiety. The salient features of the four structures in terms of weak interactions involving fluorine suggest that organic fluorine does resemble the other halogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号