首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of sorbent enrichment and ultrasound-assisted solvent extraction has been used to determine polychlorinated biphenyls in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). The enriched adsorbent was transferred into a glass vial, and ultrasound-assisted extraction of the analytes was then performed in n-hexane. Quantification was carried out by using gas chromatography coupled to tandem mass spectrometry. Breakthrough volume of the sampling step was studied, indicating that 10 m3 of air could be processed without losses of the most volatile compounds. Good recoveries (75–96%) were obtained, and limits of detection at the sub ng m–3 were achieved for all the analytes. The proposed method is very simple and fast, avoiding the use of large solvent volumes and time-consuming preconcentration steps.  相似文献   

2.
A method based on solid-phase enrichment followed by headspace (HS)-solid-phase microextraction (SPME) is optimized to determine pyrethroids in air. By active sampling, pyrethroids present in air are retained in 25 mg of activated florisil and then transferred from the solid sorbent to an SPME fiber in the HS mode. A small volume of solvent is added to the adsorbent to favor this process. The selection of the adsorbent, as well as the optimization of certain parameters affecting the SPME, is performed using an experimental design strategy. Linearity is studied by external calibration in a wide range of concentrations using gas chromatography coupled to three different detection systems: electron capture detection, micro-electron capture detection, and mass spectrometry. An analysis of variance with a lack-of-fit test is run to validate the calibration data. Breakthrough of the adsorbent was studied sampling from 0.5 to 10 m(3) air, demonstrating that 1 m(3) air could be sampled without losses of pyrethroids. Quantitative recoveries are obtained at three concentration levels, with adequate repeatability. Limits of detection of the method are estimated at the sub-ng/m(3) level in most cases, well below the regulatory limits. Finally, several real indoor samples are collected and analyzed by the proposed method. Identification and quantitation of all target analytes present in the room air are possible.  相似文献   

3.
The capabilities of ion mobility spectrometry (IMS) as a high throughput and green analytical tool in the occupational health and safety control, using pyrethroids as models has been evidenced. The method used for dermal and inhalation exposure assessment is based on the passive pyrethroid sampling using Teflon membranes, direct thermal extraction of the pyrethroids, and measurement of the vaporized analytes by IMS without reagent and solvent consumption. The IMS signatures of the studied synthetic pyrethroids under atmospheric pressure chemical ionization by investigating the formed negative ion products have been obtained. The main advantages of the proposed procedure are related to the obtained limits of detection, ranging from 0.08 to 5 ng, the simplicity of measurement, the lack of sample treatment, and therefore, solvent consumption and waste generation, and finally, the speed of analysis.  相似文献   

4.
A new sample pretreatment technique, ultrasound-assisted headspace liquid-phase microextraction was developed as mentioned in this paper. In the technique, the volatile analytes were headspace extracted into a small drop of solvent, which suspended on the bottom of a cone-shaped PCR tube instead of the needle tip of a microsyringe. More solvent could be suspended in the PCR tube than microsyringe due to the larger interfacial tension, thus the analysis sensitivity was significantly improved with the increase of the extractant volume. Moreover, ultrasound-assisted extraction and independent controlling temperature of the extractant and the sample were performed to enhance the extraction efficiency. Following the extraction, the solvent-loaded sample was analyzed by high-performance liquid chromatography. Chlorophenols (2-chlorophenol, 2,4-dichlorophenol and 2,6-dichlorophenol) were chosen as model analytes to investigate the feasibility of the method. The experimental conditions related to the extraction efficiency were systematically studied. Under the optimum experimental conditions, the detection limit (S/N=3), intra- and inter-day RSD were 6 ng mL(-1), 4.6%, 3.9% for 2-chlorophenol, 12 ng mL(-1), 2.4%, 8.8% for 2,4-dichlorophenol and 23 ng mL(-1), 3.3%, 5.3% for 2,6-dichlorophenol, respectively. The proposed method was successfully applied to determine chlorophenols in real aqueous samples. Good recoveries ranging from 84.6% to 100.7% were obtained. In addition, the extraction efficiency of our method and the conventional headspace liquid-phase microextraction were compared; the extraction efficiency of the former was about 21 times higher than that of the latter. The results demonstrated that the proposed method is a promising sample pretreatment approach, its advantages over the conventional headspace liquid-phase microextraction include simple setup, ease of operation, rapidness, sensitivity, precision and no cross-contamination. The method is very suitable for the analysis of trace volatile and semivolatile pollutants in real aqueous sample.  相似文献   

5.
A simple ultrasound-assisted dispersive liquid–liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059–1.52 mg L−1 for all analytes with the correlation coefficient (r2) > 0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2–109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.  相似文献   

6.
Considering that the determination of pyrethroid residues is of value for the safety of food, a new poly(ionic liquid)‐functionalized magnetic mesoporous nanoparticle was designed and used as an adsorbent in magnetic solid‐phase extraction for the enrichment of eight pyrethroids. The porous structure and large surface area of the mesoporous silica shell endow the adsorbent with abundant binding sites. In contrast to the reported poly(ionic liquids) with only one kind of functional group in the cationic part, the new poly(ionic liquids) with mixed cyano and phenyl groups in cationic part matched the chemical structure of the analytes to improve extraction efficiency. Under the optimum conditions, an effective method was established for the determination of eight pyrethroids in apples. Adsorption equilibrium can be quickly reached in 1 min, greatly decreasing the extraction time. The linearity range was found to be 10–200 ng/g, and the detection limits ranged from 0.24 to 1.99 ng/g. Recoveries of analytes in apple samples ranged from 87.3 to 119.0%, with relative standard deviations varying in the range of 3–21.2% (intraday) and 0.3–15.2% (interday). The results indicate that the proposed method is a good candidate for pyrethroid residues in apple samples.  相似文献   

7.
Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples.  相似文献   

8.
A simple and efficient method was developed for analysis of 28 insecticides (organochlorines, organophosphates and synthetic pyrethroids) in curry leaves (Murraya koenigii L.). The extraction of the analytes was carried out with acidified acetonitrile and purification with magnesium sulphate, primary secondary amine along with graphitised carbon black to remove excess chlorophyll content in curry leaves. Acetonitrile extracts were changed into hexane + acetone (9 + 1) and hexane + toluene (9 + 1) in the final step. In another method ethyl acetate was used for extraction and purification was carried out as above. The analytes in the samples were determined by gas chromatography (GC) and confirmed by gas chromatography–mass spectrometry (GC–MS). Use of ethyl acetate increased the recovery of the analytes, but co-extractive interference led to higher GC maintenance. Acidified acetonitrile was found to be a better extraction solvent compared with ethyl acetate. The use of hexane:toluene (9:1) as exchange solvent increased the recovery of organochlorine insecticides compared with hexane:acetone (9:1). The limit of quantification (LOQ) of the method was 0.01 mg kg?1 for organochlorine insecticides and 0.05 mg kg?1 for organophosphates and synthetic pyrethroids. The recoveries of organochlorines were within 70.36–82.45%; organophosphates, 82.54–90.93% and synthetic pyrethroids, 88.45–90.71% at the LOQ level. The method developed was found suitable for analysis of real samples of curry leaves. The pesticides detected in curry leaves collected from the retail market were mainly organophosphates and synthetic pyrethroids.  相似文献   

9.
Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC–MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m−3 air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 μg m−3), obtaining quantitative recoveries, and good precision (RSD < 10%). Method detection limits were ≤0.6 μg m−3. Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined.  相似文献   

10.
Summary A new, molecular diffusion-based, sampling device (Analyst 2) has been used for the determination of semi-volatile PAHs in air. It has been developed from a previous model (Analyst), which is suitable for volatile hydrocarbons. The new model is capable of collecting enough gaseous PAHs for GC-MS analysis of enriched samples after 2 months exposure to both urban and suburban air. The adsorbent material adopted for enriching PAHs from air (Carbopack C) gives good recoveries of analytes from naphthalene to chrysene when a single solvent extraction is run at ambient temperature. The results of an experiment for assessing the internal consistency of this device are presented here. Data collected indicate that the “uptake rate” is constant for a 6-month sampling period. Results are also presented and discussed for indoor and outdoor determination of volatile PAHs, collected at both urban and suburban sites over a 12-month period in 2-monthly steps.  相似文献   

11.
A novel mixed‐mode adsorbent was prepared by functionalizing silica with tris(2‐aminoethyl)amine and 3‐phenoxybenzaldehyde as the main mixed‐mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion‐exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid‐phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid‐phase extraction coupled with high‐performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples.  相似文献   

12.
In this study, a combination of solid-phase extraction (SPE) and solid-phase microextraction (SPME) has been used to determine chlorobenzenes in air. Analytes were sampled by pumping a known volume of air through a porous polymer (Tenax TA). Then, the adsorbent was transferred into a glass vial and SPME was performed. The quantification was carried out using gas chromatography (GC)-electron-capture detection or GC-MS. Several SPME coatings (100 microm poly(dimethylsiloxane) (PDMS), 75 microm Carboxen (CAR)-PDMS, 65 microm PDMS-divinylbenzene (DVB), 65 microm PDMS-DVB and 85 microm polyacrylate (PA) were evaluated, obtaining the highest responses with Carbowax (CW)- PDMS for the most volatile chlorobenzenes, and with PDMS-DVB or CW-DVB fibers for the semivolatile compounds. To optimize some other factors that could affect the SPME step, a factorial design was used. Kinetic studies of the SPME process were also performed. Concerning the SPE step, breakthrough was studied, showing that 2.5 m3 of air could be processed without losses of the most volatile compounds. The performance of the method was evaluated. External calibration, which does not require the complete sampling process, demonstrated to be suitable, obtaining good linearity (R2 > 0.99) for all chlorobenzenes. Recovery studies were performed at two concentration levels (4 and 40 ng/m3), obtaining quantitative recoveries (>80%). Limits of detection at the sub ng/m3 were achieved for all the target compounds.  相似文献   

13.
A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, λ-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, τ-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L−1 with RSDs values ≤3–25% (n = 5). The coefficients of estimation of the calibration curves obtained following the proposed methodology were ≥0.998. Recovery values were in the range of 45–106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L−1.  相似文献   

14.
A simple analytical procedure based on single-drop microextraction combined with in-syringe derivatization and GC-MS was developed for determination of some phenolic acids in fruits and fruit juices. Cinnamic acid, o-coumaric acid, caffeic acid, and p-hydroxybenzoic acid were used as model compounds. The analytes were extracted from a 3-mL sample solution using 2.5 microL of hexyl acetate. The extracted phenolic acids were derivatized inside the syringe barrel using 0.7 microL of N,O-bis(trimethylsilyl)acetamide before injection into the GC-MS. The influence of derivatization conditions on the yield of in-syringe silylation was studied. Experimental SDME parameters such as selection of organic solvent, solvent volume, extraction time, extraction temperature, pH, and ionic strength of the solution on the extraction performance were studied. The method provided fairly good precision for all compounds (2.4-11.9%). Detection limits were found to be between 0.6 and 164 ng/mL within an extraction time of 20 min in the GC-MS full scan mode.  相似文献   

15.
A supramolecular solvent-based dispersive liquid-liquid microextraction was proposed for the extraction and determination of lignans in Forsythiae Fructus combined with high-performance liquid chromatography. The supramolecular solvent, consisting of tetrabutylammonium bromide and n-hexanol, was mixed with the sample solution to extract the analytes by a vortex. After accomplishing the extraction, the extraction phase was separated by centrifugation and collected for high-performance liquid chromatography analysis. In this work, the important extraction variables such as the type and amount of extraction solvent, pH and salt amount in the sample phase, and extraction time were optimized. The synthesis of supramolecular solvent was studied and its microstructure was characterized by transmission electron microscopy. Under the optimal conditions, the analytes’ enrichment factors were between 6 and 170 for the proposed procedure. Satisfactory linear ranges (r ≥ 0.99), detection limits (0.025–0.4 ng/ml), precisions (< 9.2%), and accuracies (recoveries: 96.5%–104.8%) were obtained. The method has been successfully applied to the preconcentration of lignans in Forsythiae Fructus with simple and rapid operation, low cost, and environmental friendliness.  相似文献   

16.
梁婧  庄婉娥  林芳  姚文松  温裕云  欧延  弓振斌 《色谱》2014,32(11):1242-1250
对不同类型复杂基质样品中邻苯二甲酸酯(PAEs)测定的前处理方法进行了研究。待测样品类型包括沉积物、土壤、悬浮颗粒物、地表灰尘、生物组织、化妆品、皮革、塑料以及近岸/河口海水等复杂基质样品。这些样品中PAEs测定的最常用方法为气相色谱-质谱法(GC-MS),针对该测定方法所需的样品前处理研究集中于待测PAEs的萃取、净化等步骤操作条件的确定。对各种样品基质前处理方法的研究结果表明,二氯甲烷是进行固液萃取时最佳的超声振荡提取溶剂;而对各种复杂基质样品的净化,硅胶则是经济、实用的固相萃取填料;C18是最常用的近岸/河口海水样品中PAEs的预富集填料;一定比例的正己烷与乙酸乙酯混合溶液是适宜的固相萃取洗脱液。优化实验条件下,各种样品基质中PAEs的加标回收率高于58%,方法相对标准偏差(RSD)小于10.5%(n=6);方法对沉积物样品中PAEs的检出限(DL,3σ)最低,在0.3 μg/kg(邻苯二甲酸二丁酯)~5.2 μg/kg(邻苯二甲酸二异壬酯)之间;对近岸/河口海水样品的检出限(DL,3σ)在6 ng/L(邻苯二甲酸二丙酯)~67 ng/L(邻苯二甲酸二异癸酯)之间,能满足上述各类复杂基质样品中16种PAEs测定的需要。  相似文献   

17.
A multiresidue method for determining 22 polychlorinated biphenyls (PCBs) in air has been developed and validated by gas chromatography (GC) coupled to tandem mass spectrometry (MS/MS) using a triple quadrupole analyzer (QqQ). The method was validated in terms of both steps of sampling and analysis. The sampling method, which is based on active sampling using polyurethane foam (PUF) as adsorbent, was validated by generating standard atmospheres. The retention capacity of this sampling sorbent allows up to 5 m3 of air to be sampled without any breakthrough for most compounds. Two solvent extraction methods were compared: sonication and Soxhlet extraction with a mixture of n-hexane:diethyl ether (95:5 v/v). Both extraction methods yielded similar results, but the first one required less solvent and time. The method exhibited good accuracy (80.3–99.8%), precision (2.2–15.2%) and lower limits that allowed quantification and confirmation at levels as low as 0.008 ng/m3. Finally, the method was applied to the analysis of PCBs in the air in areas near to a municipal solid-waste landfill and directly above the refuse in the landfill, where it indicatedd the presence of some of the target compounds. Figure General chemical structure of polychlorinated biphenyls  相似文献   

18.
Detection of volatile organic peroxides in indoor air   总被引:1,自引:0,他引:1  
A supercritical fluid extraction cell filled with adsorbent (Carbotrap and Carbotrap C) was used directly as a sampling tube to enrich volatile organic compounds in air. After sampling, the analytes were extracted by supercritical fluid CO2 with methanol as modifier. Collected organic peroxides were then determined by a RP-HPLC method developed and validated previously using post-column derivatization and fluorescence detection. Some volatile organic peroxides were found in indoor air in a new car and a newly decorated kitchen in the lower microg m(-3) range. tert-Butyl perbenzoate, di-tert-butyl peroxide, and tert-butylcumyl peroxide could be identified.  相似文献   

19.
An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive micro solid‐phase extraction (D‐μ‐SPE) plus ultrasound‐assisted solvent desorption (UASD) prior to their determination by gas chromatography‐mass spectrometry (GC‐MS) using the selected ion storage (SIS) mode. Factors affecting the extraction efficiency of the target analytes from water samples and ultrasound‐assisted solvent desorption were optimized by a Box‐Behnken design method. The optimal extraction conditions involved immersing 10.1 mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI‐18) in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound‐assisted for 38 sec with n‐hexane (200 μL) as the desorption solvent. A 10 μL aliquot was then directly determined by large‐volume injection GC‐MS. The limits of quantitation (LOQs) were 1.2 to 5 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 11% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74% and 92%. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that HHCB and AHTN were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples. This is a simple, low cost, effective, and eco‐friendly analytical method.  相似文献   

20.
Zhang H  Shi Y  Wei S  Wang Y  Zhang H 《Talanta》2011,85(2):1081-1087
Ultrasonic nebulization extraction (UNE) coupled with headspace single-drop microextraction (HS-SDME) was developed. In the UNE process, the analytes were transferred from the aqueous phase to the gas phase. Then the analytes were transferred from the gas phase to the solvent phase by the carrier gas and extracted and enriched with suspended microdrop solvent. Finally, the microdrop solvent injected into GC-MS system. The parameters affecting extraction performance, such as type of suspended solvent, microdrop volume, flow rate of carrier gas, temperature of extraction vessel and extraction time were investigated and optimized. The proposed method can be applied for the extraction and enrichment of the volatile and semivolatile compounds simultaneously. The extraction efficiency of the proposed method was compared with that of ultrasonic extraction (UE) and UE-HS-SDME. Compared with UE-HS-SDME, the contents of constituents in the extract obtained by the proposed method were closer to those obtained by hydrodistillation (HD), which is a standard extraction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号