首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Ultrasonic atomization is used to produce fine liquid mists with diameter ranges below 100 nm. We investigated the effect of the frequency on the size distribution of ultrasonic mist. A bimodal distribution was obtained for the mist generated by ultrasonic atomization with a wide-range particle spectrometer. The peak diameter decreased with increasing frequency, and the number concentration of the mist increased in the smaller range. We determined the relation between the size distribution of the mist and the ultrasonic frequency, and we proposed a generation mechanism for the ultrasonic nanosized mist based on the amount of water vapor around the liquid column. Increasing the power intensity and density by changing the surface diameter of the ultrasonic oscillator affected the number concentration and size distribution of the nanosized mist. Using this technique, the diameter of the mist can be controlled by changing the frequency of the ultrasonic transducer.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(6):2026-2031
The generation rate of ultrasonically atomized droplets and the alcohol concentration in droplets were estimated by measuring the flow rate and the alcohol concentration of vapors from a bulk solution with a fountain. The effect of the alcohol concentration in the bulk solution on the generation rate of droplets and the alcohol concentration in droplets were investigated. The ultrasonic frequency was 2.4 MHz, and ethanol and methanol aqueous solutions were used as samples. The generation rate of droplets for ethanol was smaller than that for methanol at the same alcohol molar fraction in the bulk solution. For both solutions, at low alcohol concentration in the bulk solution, the alcohol concentration in droplets was lower than that in vapors and the atomized droplets were visible. On the other side, at high concentration, the concentration in droplets exceeded that in vapors and the atomized droplets became invisible. These results could be explained that the alcohol-rich clusters in the bulk solution were preferentially atomized by ultrasonic irradiation. The concentration in droplets for ethanol was higher than that for methanol at low alcohol concentration because the amount of alcohol-rich clusters was larger. When the alcohol molar fraction was greater than 0.6, the atomized droplets almost consisted of pure alcohol.  相似文献   

3.
对不同液体在空气中湍动雾化射流的气液两相流场进行了数值模拟.建立了一次雾化的一维模型,分析了粘度、表面张力和气液质量流量比对液雾粒径的影响趋势,采用基于粒子追踪法的二次雾化三维模型,分析了物性和各种工况对液雾粒径沿轴向分布的影响程度.计算结果和已公开发表的实验数据进行比对,得到了较好的吻合,在此基础上,分析了影响气泡雾化喷嘴雾化质量的主要因素.  相似文献   

4.
Although common atomizing systems efficiently produce sprays, a range of droplet sizes is generally obtained and the distribution is often difficult to control in terms of liquid or gaseous flow rates. It is shown that an alternative system, based on ultrasonic surface instabilities, is well suited for experimental applications where all parameters have to be controlled. Technological aspects of ultrasonic atomization are described and the droplet spray produced by an ultrasonic atomizer is characterized experimentally.  相似文献   

5.
Ultrasonic atomization: effect of liquid phase properties   总被引:4,自引:0,他引:4  
Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.  相似文献   

6.
The present work deals with measurements of the droplet size distribution in an ultrasonic atomizer using photographic analysis with an objective of understanding the effect of different equipment parameters such as the operating frequency, power dissipation and the operating parameters such as the flow rate and liquid properties on the droplet size distribution. Mechanistic details about the atomization phenomena have also been established using photographic analysis based on the capture of the growth of the instability and sudden ejection of droplets with high velocity. Velocity of these droplets has been measured by capturing the motion of droplets as streaks. It has been observed that the droplet size decreases with an increase in the frequency of atomizer. Droplet size distribution was found to change from the narrow to wider range with an increase in the intensity of ultrasound. The drop size was found to decrease with an increase in the fluid viscosity. The current work has clearly highlighted the approach for the selection of operating parameters for achieving a desired droplet size distribution using ultrasonic atomization and has also established the controlling mechanisms for the formation of droplet. An empirical correlation for the prediction of the droplet size has been developed based on the liquid and equipment operating properties.  相似文献   

7.
We simulate the gas-atomization process of a close-coupled annular nozzle for vacuum induction gas atomization at a three-dimensional scale.Moreover,the relationship between the simulated droplet type and experimentally metallic powder is established by comparing the morphology of droplets with powders.Herein,the primary atomization process is described by the volume-of-fluid(VOF)approach,whereas the prediction of powder diameter after secondary atomization is realized by the VOF-Lagrangian method.In addition,to completely reflect the breaking and deformation process of the metallic flow,we employ the VOF model to simulate the secondary atomization process of a single ellipsoidal droplet.The results show that the primary atomization process includes the formation of surface liquid film,appearance of serrated ligaments,and shredding of ligaments.Further,gas recirculation zone plays an important role in formation of the umbrella-shaped liquid film.The secondary atomization process is divided into droplet convergence and dispersion stages,and the predicted powder diameter is basically consistent with the experiment.In general,the four main powder shapes are formed by the interaction of five different typical droplets.  相似文献   

8.
《中国物理 B》2021,30(5):54702-054702
This paper aims at studying the influence mechanism of gas temperatures(300 K, 400 K, 500 K, and 600 K) on gas atomization by simulating the integral atomization process of the close-coupled nozzle in vacuum induction gas atomization(VIGA). The primary atomization is simulated by the volume of fluid(VOF) approach, and the second atomization is studied by the discrete phase model(DPM) combined with the instability breakage model. The results show that, at an increased gas temperature, the influences of gas–liquid contact angle and gas temperature in the recirculation zone on the primary atomization are virtually negligible. However, increasing the gas temperature will increase the gas–liquid relative velocity near the recirculation zone and decrease the melt film thickness, which are the main reasons for the reduced mass median diameter(MMD, d50) of primary atomized droplets. During the secondary atomization, increasing the gas temperature from 300 K to 600 K results in an increase in the droplet dispersion angle, which is beneficial to the formation of spherical metal powder. In addition, increasing the gas temperature, the positive effect of gas–liquid relative velocity increase on droplets refinement overweighs the negative influence of the GMR decrease, resulting in the reduced MMD and diameter distribution interval. From the analysis of the atomization mechanism, the increase in atomization efficiency caused by increasing the temperature of the atomizing gas, including primary atomization and secondary atomization, is mainly due to the increase in the gas drag force difference between the inner and outer sides of the annular liquid film.  相似文献   

9.
Airborne inhalable particulate in the workplace can represent a significant health hazard, and one of the primary sources of particles is mist produced through the application of cutting fluids in machining operations. The atomization process is one of the principal mechanisms associated with cutting fluid mist formation and generates droplets from fifty to a few thousand micrometers in size. These particles subsequently undergo vaporization and settling effects resulting in an aerosol to which workers may be exposed. While a variety of equipment is available to characterize the fine particulate in the breathing zone, standard equipment to measure the size of the atomized droplets is not available. In this paper, an imaging system is employed to characterize the large droplets produced by atomization in turning. One of the drawbacks of such a system is the time‐consuming experimental calibration procedure that is required to improve the accuracy of the droplet size measurements and extend the depth of field of the imaging system. With this in mind, an approach is introduced to predict droplet diameter based on measurement data without physical system calibration. The relationship between the actual diameter and the measured diameter is established based on an imaging system simulation model that includes a three dimensional point spread function and an image formation relationship grounded in the principles of geometric optics. These two components are combined using convolution integral theory to derive an image intensity profile. The introduction of halo width into the simulation greatly extends the image depth of field, which is a critical factor in capturing more droplets in one image and also minimizing particle size distribution bias towards larger droplets. The model predicts droplet diameter as a function of measured diameter and halo width. Model behavior of predicted diameters from the simulation compares well with those from a physical calibration of the system. The numerical calibration model is then used in the study of cutting fluid atomization in a turning process, and the measured droplet size distribution compares favorably with droplet sizes predicted by a mechanistic atomization model.  相似文献   

10.
为了更加深入了解超燃冲压发动机燃烧室中的燃料雾化机理,对来流Mach数为1.94的超声速气流中液体横向射流的雾化过程进行了数值模拟研究.计算采用Euler-Lagrange方法,液滴二次破碎模型采用K-H/R-T模型.计算结果表明:考虑液滴二次破碎时,采用雾化锥模型获得的射流穿透深度以及液滴速度分布与实验结果符合得很好...  相似文献   

11.
Liquid atomization as a fluid disintegration method has been used in many industrial applications such as spray drying, coating, incineration, preparation of emulsions, medical devices, etc. The usage of ultrasonic energy for atomizing liquid is gaining interest as a green and energy-efficient alternative to traditional mechanical atomizers. In the past two decades, efforts have been made to explore new applications of ultrasonic misting for downstream separation of chemicals, e.g., bioethanol, from their aqueous solutions. Downstream separation of a chemical from its aqueous solutions is known to be an energy-intensive process. Conventional distillation is featured by low energy efficiency and inability to separate azeotropic mixtures, and thus novel alternatives, such as ultrasonic separation have been explored to advance the separation technology. Ultrasonic misting has been reported to generate mist and vapor mixture in a gaseous phase that is enriched in solute (e.g., ethanol), under non-thermal, non-equilibrium, and phase change free conditions. This review article takes an in-depth look into the recent advancements in ultrasound-mediated separation of organic molecules, especially bioethanol, from their aqueous solutions. An effort was made to analyze and compare the experimental setups used, mist collection methods, droplet size distribution, and separation mechanism. In addition, the applications of ultrasonic atomization in the production of pharmaceuticals and medical devices are discussed.  相似文献   

12.
《中国物理 B》2021,30(5):57502-057502
The paper aims at modeling and simulating the atomization process of the close-coupled ring-hole nozzle in vacuum induction gas atomization(VIGA) for metallic powder production. First of all, the primary atomization of the ring-hole nozzle is simulated by the volume of fluid(VOF) coupled large eddy simulation(LES) model. To simulate the secondary atomization process, we use the method of selecting the droplet sub-model and the VOF model. The results show that the ring-hole nozzle forms a gas recirculation zone at the bottom of the delivery tube, which is the main reason for the formation of an annular liquid film during the primary atomization. In addition, the primary atomization process of the ring-hole nozzle consists of three stages: the formation of the serrated liquid film tip, the appearance and shedding of the ligaments, and the fragmentation of ligaments. At the same time, the primary atomization mainly forms spherical droplets and long droplets, but only the long droplets can be reserved and proceed to the secondary atomization. Moreover,increasing the number of ring holes from 18 to 30, the mass median diameter(MMD, d50) of the primary atomized droplets decreases first and then increases, which is mainly due to the change of the thickness of the melt film. Moreover, the secondary atomization of the ring-hole nozzles is mainly in bag breakup mode and multimode breakup model, and bag breakup will result in the formation of hollow powder, which can be avoided by increasing the gas velocity.  相似文献   

13.
对超声激励下圆板表面液滴铺展及雾化行为进行了可视化观测并基于ANSYS Workbench对超声激励下平板表面等效应力分布进行数值模拟,结合等效应力分布特性分析了不同位置液滴雾化行为差异并归纳总结了液滴铺展雾化的三种典型行为,研究结果表明:超声作用可使圆板表面液滴瞬间雾化且表面会形成与应力分布相一致的间隔交替的"雾化环带"和"微滴环带";液滴总是向着等效应力增加的方向铺展雾化;液滴在圆板上的铺展雾化行为包括单侧铺展雾化、两侧同时铺展雾化以及整体均匀雾化三种类型且雾化类型与所处位置等效应力梯度有关。  相似文献   

14.
Whispering gallery mode particle sensing experiments are commonly performed with solid resonators, whereby the sensing volume is limited to the weak evanescent tail of the mode near the resonator surface. In this work we discuss in detail the sensitivity enhancements achievable in liquid droplet resonators wherein the stronger internal fields and convenient means of particle delivery can be exploited. Asymptotic formulae are derived for the relative resonance shift, line broadening and mode splitting of TE and TM modes in liquid droplet resonators. As a corollary the relative fraction of internal and external mode energy follows, which is shown to govern achievable sensitivity enhancements of solute concentration measurements in droplet sensors. Experimental measurements of nanoparticle concentration based on whispering gallery mode resonance broadening are also presented.  相似文献   

15.
The production of liquid sprays represents a key technology for a wide range of industrial proceses. Most applications currently use pressure or air-assisted atomization, resulting in the production of polydisperese sprays. Recent advances in experimental and numerical techniques for investigating liquid spraying processes, however, have enabled a closer examination of parameter optimization, leading to the conclusion that in may cases, a much narrower size distribution, or even a monodisperse spray, may exhibit many advantages. Currently monodisperse droplet generators, or drop-on-demand generators, do not meet this challenge of producing monodisperse sprays, primarily owing to the very low volume flow rate of liquid which is atomized. In the present work, a monodisperse sprya generator is introduced, which overcomes this difficulty for many applications.  相似文献   

16.
Basil oil (Ocimum basilicum) nanoemulsion was formulated using non-ionic surfactant Tween80 and water by ultrasonic emulsification method. Process of nanoemulsion development was optimized for parameters such as surfactant concentration and emulsification time to achieve minimum droplet diameter with high physical stability. Surfactant concentration was found to have a negative correlation with droplet diameter, whereas emulsification time had a positive correlation with droplet diameter and also with intrinsic stability of the emulsion. Stable basil oil nanoemulsion with droplet diameter 29.3 nm was formulated by ultrasonic emulsification for 15 min. Formulated nanoemulsion was evaluated for antibacterial activity against Escherichia coli by kinetics of killing experiment. Fluorescence microscopy and FT-IR results showed that nanoemulsion treatment resulted alteration in permeability and surface features of bacterial cell membrane.  相似文献   

17.
Spray characteristics and their spatial distribution have been investigated experimentally for sprays generated by the breakup of thin liquid sheets in co‐flowing air streams. The spray characteristics such as droplet mean and fluctuation velocity and Sauter mean diameter have been measured by using phase Doppler anemometry under various liquid and air flow conditions at the nozzle exit. The results show that at a given spray cross section the droplet axial mean velocity has a maximum value at the spray center, and decreases towards the edge of the spray; whereas the Sauter mean diameter has a minimum value at the center and increases monotonically towards the spray periphery. Data analysis indicates that sufficiently downstream of the nozzle exit the droplet mean velocity attains a jet‐like self‐similar distribution in the transverse direction, and such universal distribution is also observed for the turbulent fluctuation velocity and turbulent intensity, although it is achieved further downstream compared to the mean velocity profile. The Sauter mean diameter at the spray center has a complex variation in the downstream direction due to secondary atomization at high air velocity near the nozzle exit and droplet entrainment, migration and possible coalescence farther downstream.  相似文献   

18.
Correlations to predict droplet size in ultrasonic atomisation.   总被引:2,自引:0,他引:2  
R Rajan  A B Pandit 《Ultrasonics》2001,39(4):235-255
In conventional two fluid nozzles, the high velocity air imparts its energy to the liquid and disrupts the liquid sheet into droplets. If the energy for liquid sheet fragmentation can be supplied by the use of ultrasonic energy, finer droplets with high sphericity and uniform size distribution can be achieved. The other advantage of ultrasound induced atomisation process is the lower momentum associated with ejected droplets compared to the momentum carried by the droplets formed using conventional nozzles. This has advantage in coating and granulation processes. An ultrasonic probe sonicator was designed with a facility for liquid feed arrangement and was used to atomise the liquid into droplets. An ingenious method of droplet measurement was attempted by capturing the droplets on a filter paper (size variation with regard to wicking was uniform in all cases) and these are subjected to image analysis to obtain the droplet sizes. This procedure was evaluated by high-speed photography of droplets ejected at one particular experimental condition and these were image analysed. The correlations proposed in the literature to predict droplet sizes using ultrasound do not take into account all the relevant parameters. In this work, a truly universal correlation is proposed which accounts for the effects of physico-chemical properties of the liquid (flow rate, viscosity, density and surface tension), and ultrasonic properties like amplitude, frequency and the area of vibrating surface. The significant contribution of this work is to define dimensionless numbers incorporating ultrasonic parameters, taking cue from the conventional numbers that define the significance of different forces involved in droplet formation. The universal correlations proposed are robust and can be used for designing ultrasonic atomisers for different applications. Among the correlations proposed here, those ones that are based on the dimensionless numbers and Davies approach predict droplet sizes within acceptable limits of deviation. Also, an empirical correlation from experimental data has been proposed in this work.  相似文献   

19.
Piezoelectric atomization has been applied in the field of respiratory medicine delivery and chemistry. However, the wider application of this technique is limited by the viscosity of the liquid. High-viscosity liquid atomization has great potential for applications in aerospace, medicine, solid-state batteries and engines, but the actual development of atomization is behind expectations. In this study, instead of the traditional model of single-dimensional vibration as a power supply, we propose a novel atomization mechanism that uses two coupled vibrations to induce micro-amplitude elliptical motion of the particles on the surface of the liquid carrier, which produces a similar effect as localized traveling waves to push the liquid forward and induce cavitation to achieve atomization. To achieve this, a flow tube internal cavitation atomizer (FTICA) consisting of a vibration source, a connecting block and a liquid carrier is designed. The prototype can atomize liquids with dynamic viscosities up to 175 cP at room temperature with a driving frequency of 507 kHz and a voltage of 85 V. The maximum atomization rate in the experiment is 56.35 mg/min, and the average atomized particle diameter is 10 µm. Vibration models for the three parts of the proposed FTICA are established, and the vibration characteristics and atomization mechanism of the prototype were verified using the vibration displacement measurement experiment and the spectroscopic experiment. This study offers new possibilities for transpulmonary inhalation therapy, engine fuel supply, solid-state battery processing and other areas where high-viscosity microparticle atomization is needed.  相似文献   

20.
An electrohydrodynamic (EHD) atomization from a point-to-plate system, with a wet porous point as a corona electrode, has been studied. And the atomized water droplets from the wet porous point, as well as the water droplet traces, the water droplet charge-to-mass ratios, and the water droplet number concentrations, were investigated. It was observed that the wet porous point can atomize abundant amounts of water droplet, 2.8, 2.6 and 2.2 mg/min for negative, AC and positive corona, respectively. The migrated water droplet traces were observed. The positive wet porous point atomized very fine water droplets than those obtained with the negative wet porous point. Moreover, the water droplets atomized from the AC corona showed granular-like larger traces. A weak corona discharge can atomize water droplets very effectively. On the other hand, an intensive corona discharge can eject more water droplets. As a result with the wet porous point, the maximum corona-current-based and corona-power-based water droplet atomization yields of YC = 3.34, 3.32 and 3.25 μg/μAs and YP = 0.35, 0.40 and 0.27 mg/Ws have been obtained for the negative, AC and positive corona discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号