共查询到3条相似文献,搜索用时 62 毫秒
1.
2.
实体肿瘤血管具有扩张、扭曲、不规则分支以及分支间连接絮乱等特征. 为了考察这些特征对血液流动的影响,将肿瘤血管简化为垂直相互贯通的微血管网,借助微流体实验装置,以一定浓度的红细胞悬液作为流动介质,研究红细胞在微血管网中的流动和分布特性. 具体实验方案如下:首先,采用软刻蚀技术,在聚二甲基硅氧烷(polydimethylsiloxane, PDMS)上加工出微血管网;然后,采用微注射泵控制微血管网入口处的红细胞悬液流量,使用倒置显微镜和高速摄影系统观察并记录实验过程;最后,通过Matlab 软件包Piv-lab 及高速摄影配套软件对获得的视频图像进行处理,提取红细胞在微血管网中的流动和分布数据. 数据处理结果显示,红细胞在微血管网中的流动和分布特性受悬液内的红细胞压积(hematocit, Hct)的影响. 红细胞随悬液Hct 的不同呈现2 种运动轨迹:一种为仅沿着轴向微管道流动;另一种是从轴向微管道流入并穿过径向微管道,再进入另一侧的轴向微管道. 另外,入口流量相同时,红细胞在微血管网中的流动速度随Hct 变化呈现不同,Hct 为3% 和5% 的红细胞速度要明显高于Hct 为1% 的红细胞速度. 相似文献
3.
随着纤维增强复合材料应用领域的不断扩展且用量激增,亟需理清复合材料微观结构损伤对宏观力学性能影响的内在机制。因此,发展针对纤维增强复合材料微结构破坏过程的建模与高效模拟方法就显得十分重要。本文借助显微CT(Micro-computed Tomography)扫描技术,提出了一种基于显微CT图像中像素点离散的近场动力学建模与模拟方法。一方面,近场动力学作为一种由积分方程建模的非局部理论,便于采用基于空间点离散的数值计算方法,相比传统的连续介质力学能够更有效地模拟材料从连续变形到裂纹萌生与扩展(非连续变形)的全过程。另一方面,对显微CT图像使用像素点灰度阈值分割处理技术,能够快速建立含有复合材料原位微结构信息的空间点离散模型。该离散模型可以直接用于微结构破坏过程的近场动力学模拟,从而避免了传统的数值模拟技术需要依据像素点先建立光滑的几何模型、再划分成有限单元网格的复杂前处理过程,并且极大地保留了复合材料的原位组分分布信息。数值模拟结果表明,基于显微CT图像的近场动力学建模方法能够精确捕捉到复合材料微结构信息,并能准确模拟纤维增强复合材料的微结构破坏过程。 相似文献