首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The adsorption and corrosion inhibition behavior of cefuzonam (CZM) at mild steel surface were studied gravimetrically and electrochemically by using electrochemical impedance spectroscopy and Tafel polarization techniques. The increase in concentration and immersion time showed a positive effect. Inhibitor molecules directly adsorb on the surface on the basis of donor acceptor interactions between the p-electrons of benzene, sulfur and nitrogen atoms and the vacant d-orbital of iron atoms. The adsorption of CZM followed the Langmuir adsorption isotherm. A potentiodynamic polarization study revealed that CZM acted as mixed type of inhibitor. The results obtained from different methods are in good agreement. The adsorption behavior of CZM was experimentally investigated by contact angle measurement on metal surface. The contact angle of metal surface to the acid solution increased with inhibitor concentration, thereby confirming the increased hydrophobic nature of metal surface to the acid solution having the inhibitor.  相似文献   

2.
The inhibition of the corrosion of mild steel in hydrochloric acid solution by the seed extract of Karanj (Pongamia pinnata) has been studied using weight loss, electrochemical impedance spectroscopy, potentiodynamic polarization, and linear polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The adsorption of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. Values of inhibition efficiency calculated from weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy are in good agreement. Polarization curves showed that Karanj (P. pinnata) seed extract behaves as a mixed-type inhibitor in hydrochloric acid. The activation energy as well as other thermodynamic parameters for the inhibition process was calculated. The adsorbed film on mild steel surface containing Karanj (P. pinnata) seed extract inhibitor was also measured by Fourier transform infrared spectroscopy. The results obtained showed that the seed extract of Karanj (P. pinnata) could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.  相似文献   

3.
The effect of sodiumcarboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L -1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

4.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

5.
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L-1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L-1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298-328 K. The associated apparent activation energy (E*a ) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

6.
选用结构中同时带有羟基、羧基和氨基的羧甲基壳聚糖为掺杂酸,通过改变掺杂酸与苯胺单体的比例实现了产物从纳米纤维(直径为100nm)到空心微米小球(直径为200nm)的转变.傅立叶红外(FTIR)和紫外可见光谱(UV)表征结果表明,纳米纤维和空心微米小球均为掺杂态聚苯胺.另外,采用电化学交流阻抗技术和动电位极化方法研究了所得聚苯胺在0.5mol/L盐酸溶液中对碳钢的缓蚀作用.结果表明,聚苯胺的加入量为40mg/L时,其对碳钢的缓蚀效率高达91.6%~92.3%.  相似文献   

7.
硫酸溶液中聚天冬氨酸对碳钢的吸附缓蚀性能   总被引:12,自引:0,他引:12  
崔荣静  谷宁  李春梅 《电化学》2005,11(3):294-297
应用电化学极化曲线和交流阻抗研究聚天冬氨酸(PASP)对碳钢的缓蚀性能,讨论了PASP浓度和温度对缓蚀效果的影响.结果表明:PASP是一种以抑制阳极为主的缓蚀剂.在实验温度范围内,PASP在0.5mol/L硫酸溶液中对碳钢的缓蚀效率随着温度升高而降低,并以10℃时的缓蚀效果最好.在给定温度下,缓蚀率均随PASP浓度的增加而迅速增加,但当PASP质量浓度达到2.5g/L时,缓蚀率的增加趋于平缓,10℃下,缓蚀率的最高值可达80.33%(PASP 6.0g/L),PASP在碳钢表面的吸附基本服从Freund lich吸附等温式,PASP的加入增大了碳钢的腐蚀反应表观活化能.  相似文献   

8.
The effect of sodium carboxymethyl cellulose (Na-CMC) on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl solution has been investigated by using weight loss (WL) measurement, potentiodynamic polarization, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods. These results showed that the inhibition efficiency of Na-CMC increased with increasing the inhibitor concentration. Potentiodynamic polarization studies revealed that the Na-CMC was a mixed type inhibitor in 1.0 mol·L−1 HCl. The adsorption of the inhibitor on mild steel surface has been found to obey the Langmuir isotherm. The effect of temperature on the corrosion behavior of mild steel in 1.0 mol·L−1 HCl with addition of 0.04% of Na-CMC has been studied in the temperature range of 298–328 K. The associated apparent activation energy (E*a) of corrosion reaction has been determined. Scanning electron microscopy (SEM) has been applied to investigate the surface morphology of mild steel in the absence and presence of the inhibitor molecules.  相似文献   

9.
The effect of betanin (2,6-pyridinedicarboxylic acid, 4-(2-(2-carboxy-5-(beta-D-glucopyr-anosyloxy)-2,3-dihydro-6-hydroxy-1H-indol-1-yl)ethenyl)-2,3-dihydro-(S-(R*,R*))) on the corrosion inhibition of mild steel has been investigated in 1 M HCl solution. Weight loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques were applied to study the mild steel corrosion behavior in the absence and presence of different concentrations of betanin under the influence of various experimental conditions. The results obtained showed that betanin is a good “green” inhibitor for mild steel in 1 M HCl solution. Scanning electron microscopy observations of the steel surface confirmed the protective role of the inhibitor. The polarization curves showed that betanin behaves mainly as a mixed-type inhibitor. Maximum inhibition efficiency (98%) is obtained at betanin concentrations of 0.01 M. The results obtained from weight loss, polarization, and impedance measurements are in good agreement.  相似文献   

10.
The inhibition effect of 1,1’-thiocarbonyldiimidazole (TCDI) on the corrosion behaviors of mild steel (MS) in 0.5 mol·L -1 H2SO4 solution was studied with the help of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR) techniques. The effect of immersion time on the inhibition effect of TCDI was also investigated over 72 h. For the long-term tests, hydrogen evolution with immersion time (VH2-t) was measured in addition to the three techniques already mentioned. The thermodynamic parameters, such as adsorption equilibrium constant (Kads) and adsorption free energy (⊿Gads) values, were calculated and discussed. To clarify inhibition mechanism, the synergistic effect of iodide ion was also investigated. The potential of zero charge (PZC) of the MS was studied by electrochemical impedance spectroscopy method, and a mechanism of adsorption process was proposed. It was demonstrated that inhibition efficiency increased with the increase in TCDI concentration and synergistically increased in the presence of KI. The inhibition efficiency was discussed in terms of adsorption of inhibitor molecules on the metal surface and protective filmformation.  相似文献   

11.
Corrosion inhibition of indole‐3‐acetic acid and N‐acetyl tryptophan on carbon steel was investigated using polarization and electrochemical impedance spectroscopy (EIS). Polarization results revealed that corrosion inhibitors could reduce the rate of cathodic and anodic reactions on metal surface. EIS analysis showed inhibition efficiency of indoles increases by increasing the inhibitor concentration. The maximum inhibition efficiency was 97% and 80% in solutions containing 10 mM indole‐3‐acetic acid and 10 mM N‐acetyl tryptophan, respectively. The adsorption of inhibitors was found to follow Langmuir isotherm. Adsorption and film formation of inhibitors on the metal substrate were confirmed by calculating thermodynamic adsorption parameter (ΔG0ads) and characterization of exposed metals' surface through contact angle measurements. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The inhibition action of Avogadro natural oil on corrosion of mild steel in one molar hydrochloric acid solution was investigated by gravimetric and potentiodynamic polarization techniques. The surface morphology of as-corroded samples was assessed with high resolution scanning transmission electron microscopy equipped with energy dispersive spectroscopy (HR-STEM/EDS). From the results, the presence of Avogadro natural oil in the metal–acidic interface decreased the corrosion rate with all the exposure times. The inhibition efficiency (%IE) increases with the concentration of the inhibitor considered. Results obtained from gravimetric measurements indicate that the natural oil exhibited higher efficiencies of 93.26 % after 384 h of exposure time and 98.26 % recorded in the potentiodynamic polarization method, both at 4.5 g/v inhibitor addition. Equally, results from the linear polarization indicated higher potential value with an increase in the polarization resistance (R p) and lower current density for the inhibited samples than the uninhibited mild steel sample. The inhibitive effect of this oil was explained in view of adsorption on the metal surface. The adsorption process follows the Langmuir adsorption isotherm.  相似文献   

13.
刘琳  彭丹  张艳萍  张强  钱建华 《化学通报》2015,78(12):1158-1161
通过金相显微镜和接触角测试研究了5-苯基-1H-四氮唑在硫-乙醇体系中对铜的缓蚀性能。结果显示,缓蚀剂可以在铜片表面形成疏水性保护膜,有效抑制了铜片的腐蚀。电化学测试表明,当缓蚀剂浓度为70 mg/L时缓蚀效率达到87%,对铜电极有明显的缓蚀作用。通过量子化学密度泛函理论研究了缓蚀剂分子结构与缓蚀性能的关系,分析了缓蚀剂分子的活性位点。通过分子动力学模拟研究了缓蚀剂分子在Cu的(111)表面的吸附行为。  相似文献   

14.
The inhibitive effect of 2-aminoquinoline-6-carboxylic acid (AQC) against mild steel corrosion in 1?M HCl solutions was investigated using conventional weight loss, potentiodynamic polarization, linear polarization and electrochemical impedance spectroscopy methods. The weight loss results showed that AQC is an excellent corrosion inhibitor since its efficiency increased with the concentration to attain 91.8?% at 500?mg?l?1. Electrochemical polarization measurements revealed that AQC acted as a mixed-type inhibitor and the results of electrochemical impedance spectroscopy have shown that the change in the impedance parameters, charge transfer resistance and double layer capacitance, with the change in concentration of the inhibitor is due to the adsorption of the molecule leading to the formation of a protective layer on the surface of mild steel. The adsorption was assumed to occur on the steel surface through the active centers of the molecule. The inhibition action of AQC was discussed in view of Langmuir adsorption isotherm. Density functional theory calculations of quantum parameters were used to explain efficiency in relation with molecular structure.  相似文献   

15.
采用失重实验,动电位极化,交流阻抗,量子化学计算和拉曼光谱等方法研究了N,N′-二异丙氧基丙基二硫代二丙酰胺(DPDA)在1 mol.L-1盐酸溶液中对碳钢的缓蚀性能.失重实验结果表明,DPDA在盐酸溶液中能够有效地抑制碳钢的腐蚀,当缓蚀剂DPDA的浓度为1×10-3 mol.L-1时,其缓蚀效率达到90.2%.极化曲线表明DPDA为混合型缓蚀剂,单一的容抗弧变化表明碳钢电极表面的腐蚀过程主要由电荷转移步骤控制.由失重实验,动电位极化和电化学交流阻抗方法得到的DPDA缓蚀效率具有较好的相关性,均表现为缓蚀效率随着DPDA浓度的增大而增加.另外,DPDA在碳钢表面的吸附符合Langmuir吸附等温式.吸附过程的吉布斯自由能(ΔG0a0d0s)为-38.65 kJ.mol-1,这说明DPDA分子在碳钢表面形成共价键而发生了自发的化学吸附.拉曼光谱表明DPDA分子有效地吸附在碳钢表面,量子化学计算结果证明DPDA分子在碳钢表面的化学吸附活性中心集中在S原子上.  相似文献   

16.
Corrosion inhibition by triazole derivatives (n-MMT) on mild steel in 5 % hydrochloric acid (HCl) solutions has been investigated by weight loss and electrochemical methods. The results obtained revealed that these compounds performed excellently as corrosion inhibitors for mild steel in HCl solution. Potentiodynamic polarization studies showed that they suppressed both the anodic and cathodic processes and inhibited the corrosion of mild steel by blocking the active site of the metal. The effect of temperature on the corrosion behavior of mild steel in 5 % HCl with the addition of different concentrations of the inhibitors was studied in the temperature range from 303 to 333 K. The associated activation corrosion and free adsorption energies were determined. The adsorption of these compounds on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of molecular structure on the inhibition efficiency has been investigated by quantum chemical calculations. The electronic properties of inhibitors were calculated and are discussed.  相似文献   

17.
In this study, 5-naphthylazo-8-hydroxyquinoline (5NA8HQ) was synthesized, characterized, and tested as a corrosion inhibitor for mild steel in 1 M HCl solution in the temperature range 20 to 50 °C. Weight-loss and potentiodynamic polarization measurements were used to analyse the corrosion behaviour of the metal in the absence and presence of different concentrations of the inhibitor. Analyses of surface film and inhibited solutions by FT-IR and UV–visible spectroscopy enabled us to clarify aspects of the inhibition mechanism. Further examination using X-ray diffraction confirmed the action of 5NA8HQ as an effective inhibitor of corrosion of mild steel in acidic media. The results obtained showed that this compound was a good inhibitor of corrosion. The inhibition is of mixed anodic–cathodic nature with predominance of anodic character. The Langmuir isotherm was found to accurately describe the adsorption behaviour of 5NA8HQ. Spectrophotometric analysis showed the formation of a layer at the surface of the corroded sample; this was interpreted as formation of complexes between 5NA8HQ and metal cations present in the steel structure.  相似文献   

18.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

19.
The inhibition effect of sulfamethoxazole on mild steel corrosion in 1‐M hydrochloric acid solution is investigated by electrochemical and quantum chemical measurements. Electrochemical polarization studies show that sulfamethoxazole acts as a mixed‐type corrosion inhibitor. The adsorption of the inhibitor on mild steel in 1‐M hydrochloric acid system is studied at different temperatures (303‐333 K). The adsorption of sulfamethoxazole on mild steel surface is an exothermic process and obeys the Temkin adsorption isotherm. Based on the potential of zero charge values and quantum chemical parameters, the mechanism of adsorption is proposed.  相似文献   

20.
The corrosion inhibition of mild steel in hydrochloric acid solution in the presence of three different molecular weights of polyvinyl alcohol (PVA) designated as PVA-I, PVA-II, and PVA-III corresponding to 14,000, 72,000, and 125,000 g mol?1, respectively, was investigated using electrochemical impedance spectroscopy, linear polarization resistance (LPR), and potentiodynamic polarization techniques at 25°C. It was found that PVA of different molecular weights inhibited the corrosion of mild steel in the acid environment. Inhibition efficiency (η%) increases with increase in concentration of the polymers. LPR measurements clearly show that inhibition efficiency increases with increasing molecular weight in the order PVA-III > PVA-II > PVA-I. Polarization curves indicate that PVA functions as a mixed inhibitor affecting both the anodic metal dissolution and cathodic hydrogen evolution partial reactions of the corrosion process. The experimental data obtained fitted well into Langmuir adsorption isotherm model. Physical adsorption mechanism is proposed from the thermodynamic (free energy of adsorption) parameters obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号