首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
变厚度多层介质结构的一种三维数值半解析方法   总被引:2,自引:0,他引:2  
应用复合材料层合结构分理论思维,建立起以样条函数、级数及插值相结合的新型三维数值半解析算法,以期解决复材呈变厚度结构的变形及内力分析,并作为该类型结构优化设计的高精度的内核计算工具。本文方法克服了一般半解析方法对解析函数的过分依赖性,在原始数据准备、计算规模、数值精度、收特性及稳定性诸方面都较有限元方法有显著改善;特别对复材层合结构的变厚度区段,无需主任何假设,从而为解特殊类型问题提供了极好的分析  相似文献   

2.
微裂纹屏蔽机理的力学理论   总被引:6,自引:1,他引:5  
简述了微裂纹屏蔽的力学理论和主要结论.分析了与这些理论有关的两种研究途径中的四种假设的正当性和适用范围.对相互矛盾的结论做了讨论.介绍了作者在这一领域的研究成果,并尝试将这方面的研究推广到复合材料和界面裂纹问题中.   相似文献   

3.
钢-混凝土组合梁受扭性能全过程分析   总被引:3,自引:0,他引:3  
在合理假定的基础上,根据混凝土、钢梁和钢筋的本构关系,利用平衡及变形协调条件,推导出了适用于组合梁受扭全过程分析的一系列方程式,并提出了组合梁受扭分析的简化算法。然后,用VC 6.0编制了分析程序,制作了输入和输出的可视化界面。最后,对实验和理论分析结果进行了对比,结果表明方法合理,精度满足要求。  相似文献   

4.
Stability characteristics of composite skew plates subjected to in-plane compressive load are investigated here using the shear deformable finite element approach. The influences of high prebuckling stresses at the corner regions of isotropic and composite skew plates on their stability characteristics are emphasized for different load direction, boundary condition and laminate stacking sequence. The non-linear governing equations based on von Kármán's assumptions are solved by Newton-Raphson technique to get the hitherto unreported postbuckling equilibrium paths of composite skew plates loaded between two rigid flat platens. The variation of out-of-plane deformation and end-shortening with compressive in-plane load are examined for simply supported and clamped skew plates made of isotropic, symmetric and unsymmetric laminates. Marguerre's shallow shell theory is employed to study the effect of sinusoidal imperfection on the non-linear behavior of composite skew plates.  相似文献   

5.
IntroductionTheproblemofdelaminationbucklingofcompositelaminateshasgeneratedsignificantresearchinterestsandhasbeenthesubjectofmanytheoreticalinvestigationsinthisdecade.Afiniteelementmodel[1]waspresentedtosolvethepost_bucklingproblemofcompositeplateswit…  相似文献   

6.
Rheological properties of polymer blends with sphere-in-sphere morphology   总被引:1,自引:0,他引:1  
The linear viscoelastic behavior of polystyrene (PS) and poly(methylmethacrylate) (PMMA) blends with PS as the matrix and amounts of PMMA in the range 10–30 wt% was investigated. Transmission electron microscopy (TEM) revealed a complex morphology which was characterized by the existence of composite particles; the PMMA particles which are enclosed in the PS matrix themselves carry PS inclusions. In order to explain the G* data of these blends a model is presented which consists of a Palierne model for the composite particles and a Palierne model for the whole blend, taking into account composite and neat particles. Simulations show the principal relevance of the assumptions made. Moreover, it is shown that the measurements agree well with the model for the whole measured frequency region and that the fit parameters, the size of the composite particles and the concentration and size of interior particles are in reasonable agreement with data available from TEM. Received: 1 November 1998 Accepted: 5 April 1999  相似文献   

7.
The numerical analysis of engineering structures is usually based upon the assumptions of a homogeneous as well as a continuous medium. These simplifications are maintained also for structures made of fibre reinforced composite materials which possess by definition a heterogeneous finescale architecture. Furthermore in the course of the loading of such structures void nucleations might arise out of the debonding of the embedded fibres or the growth of microcracks inside the matrix phase. Hence, the assumption of a continuous and homogeneous medium is not valid from a microscopical point of view. Nevertheless, it is numerically advantageous to keep up these simplifying assumptions on the macrolevel. Therefore, the knowledge of the so called macroscopic or effective material behaviour is needed. The overall properties can be described in terms of volume averaged quantities that smear the heterogeneities of the microscopic structure and the influence of its defects. Since the evolution of damage within composite materials means a rather complex process, a purely phenomenological approach is hardly feasible. Hence, the average properties are to be obtained from a micromechanical analysis of the discontinuous and damaged finescale structure. The efficiently reformulated version of the micromechanically based Generalized Method of Cells (GMC) provides the macroscopic tangential constitutive tensor in closed-form. The numerical efficiency of the approach allows for the use of the GMC as the constitutive model for nonlinear finite element analyses. Two-scale simulations of macroscale composite structures considering process depending damage evolution on the microscale of heterogeneous media becomes feasible.  相似文献   

8.
A fibrous composite beam with an edge crack is submitted to a cyclic bending moment and the crack bridging actions due to the fibers. Assuming a general elastic-linearly hardening crack bridging model for the fibers and a linear-elastic law for the matrix, the statically indeterminate bridging actions are obtained from compatibility conditions. The elastic and plastic shake-down phenomena are examined in terms of generalised cross-sectional quantities and, by employing a fatigue crack growth law, the mechanical behaviour up to failure is captured. Within the framework of the proposed fracture mechanics-based model, the cyclic crack bridging due to debonding at fiber–matrix interface of short fibers is analysed in depth. By means of some simplifying assumptions, such a phenomenon can be described by a linear isotropic tensile softening/compressive hardening law. Finally, numerical examples are presented for fibrous composite beams with randomly distributed short fibers.  相似文献   

9.
Composite laminates offer superior load carrying capacity. Reliable application of structures requires a knowledge of their stress/strain and failure behavior. past treatments involved assumptions in both the stress and failure analyses; they become increasingly more difficult when the failure of the microstructure constituents is to be included in the continuum analysis of the laminates. Recognizing the conventional failure criteria used for composite material analyses, this work adopts the first-ply failure criterion by application of a polynomial function and the finite element procedure.The laminates are modeled by the Reissner-Mindlin plate theory that accounts for moderate rotation. This is because shear effects are more pronounced in composite laminates whose transverse shear modulus is low relative to the Young's modulus. Failure loads are obtained for different laminate thicknesses, stacking sequences and aspect ratios and different failure criteria. The results show that predictions made from the maximum stress criterion are nearly the same as the others, except for those obtained by the Hill criterion.  相似文献   

10.
This paper is focused on the geometrically exact elastic stability analysis of two interacting kinematically constrained, flexible columns. Possible applications are to partially composite or sandwich columns. A partially composite column composed of two inextensible elastically connected sub-columns is considered. Each sub-column is modeled by the Euler–Bernoulli beam theory and connected to each other via a linear constitutive law for the interlayer slip. The paper discusses the validity of parallel and translational kinematics beam assumptions with respect to the interlayer constraint. Buckling and post-buckling behavior of this structural system are studied for cantilever columns (clamped-free boundary conditions). A variational formulation is presented in order to derive relevant boundary conditions in a geometrically exact framework. The exact post-buckling behavior of this partially composite beam-column is investigated analytically and numerically. The Euler elastica problem is obtained in the case of non-composite action. The “partially composite elastica” is then treated analytically and numerically, for various values of the interaction connection parameter. An asymptotic expansion is performed to evaluate the symmetrical pitchfork bifurcation, and comparisons are made with some exact numerical results based on the numerical treatment of the non-linear boundary value problem. A boundary layer phenomenon, similar to that also observed for the linearized bending analysis of partially composite beams, is observed for large values of the connection parameter. This boundary layer phenomenon is investigated with a straightforward asymptotic expansion, that also is valid for large rotations. Finally, the paper analyses the effect of some additional imperfection eccentricities in the loading mode, that lead to some pre-bending phenomena.  相似文献   

11.
A variational asymptotic micromechanics model has been developed for predicting effective thermoelastic properties of composite materials, and recover the local fields within the unit cell. This theory adopts essential assumptions within the concept of micromechanics, achieves an excellent accuracy, and provides a unified treatment for 1D, 2D, and 3D unit cells. This theory is implemented using the finite element method into the computer program, VAMUCH, a general-purpose micromechanics analysis code. Several examples are used to validate the theory and the code. The results are compared with those available in the literature and those produced by a commercial finite element package.  相似文献   

12.
利用平均化方法提出了倾斜内锁型三维机织陶瓷基复合材料弹性性能分析的三维细观力学模型,对材料的弹性性能进行了预测。这个力学模型考虑了倾斜内锁型三维机织陶瓷基复合材料经向纤维束的弯曲和纬向纤维束的平直,纤维束的横截面形状尺寸和相邻纤维束之间的孔洞以及材料制造过程中碳纤维性能下降对弹性性能的影响。基于层合板理论,提出两种单胞应变状态假设分别对材料的九个弹性常数进行了推导计算,结果表明两种方法理论的预测值非常接近。计算结果与实验值比较吻合,表明所提出的细观力学模型是合理的,可以为纺织陶瓷基复合材料的优化设计提供有价值的参考。  相似文献   

13.
Dynamic stability behavior of the shear-flexible composite beams subjected to the nonconservative force is intensively investigated based on the finite element model using the Hermitian beam elements. For this, a formal engineering approach of the mechanics of the laminated composite beam is presented based on kinematic assumptions consistent with the Timoshenko beam theory, and the shear stiffness of the thin-walled composite beam is explicitly derived from the energy equivalence. An extended Hamilton’s principle is employed to evaluate the mass-, elastic stiffness-, geometric stiffness-, damping-, and load correction stiffness matrices. Evaluation procedures for the critical values of divergence and flutter loads of the nonconservative system with and without damping effects are then briefly introduced. In order to verify the validity and the accuracy of this study, the divergence and flutter loads are presented and compared with the results from other references, and the influence of various parameters on the divergence and flutter behavior of the laminated composite beams is newly addressed: (1) variation of the divergence and flutter loads with or without the effects of shear deformation and rotary inertia with respect to the nonconservativeness parameter and the fiber angle change, (2) influence of the internal and external damping on flutter loads whether to consider the shear deformation or not.  相似文献   

14.
Shear deformable finite beam elements for composite box beams   总被引:3,自引:0,他引:3  
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress–strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.  相似文献   

15.
In this paper moderately large amplitude vibrations of a polygonally shaped composite plate with thick layers are analyzed. Three homogeneous and isotropic layers with a common Poisson’s ratio are perfectly bonded and their arbitrary thickness and material properties are symmetrically disposed about the middle plane. Mindlin–Reissner kinematic assumptions are implemented layerwise, and as such model both the global and local response. Geometric nonlinear effects arising from longitudinally constrained supports are taken into account by Berger’s approximation of nonlinear strain–displacement relations. Overall cross-sectional rotations are defined and subsequently a correspondence of this complex problem to the simpler case of a homogenized shear-deformable nonlinear plate with effective stiffness and hard hinged boundary conditions is found. The nonlinear steady-state response of composite plates subjected to a time-harmonic lateral excitation is investigated and the phenomena of nonlinear resonance are studied and evaluated.  相似文献   

16.
A non-circular shell cross-section with flat sides and circular arc corners is analyzed using the theorem of minimum potential energy. Two-dimensional, plane strain assumptions are utilized, and the potential energy (PE) expression for the structure is developed, including first-order transverse shear deformation effects. The unknown displacements are represented by power series, and the PE expression is rewritten in terms of the summation convention for the power series. The variation of the PE expression is taken, leading to a linear system of equations that is solved for the unknown power series coefficients. With the displacements determined, stresses are calculated for a composite sandwich construction. Excellent agreement is found with other analytical methods and with finite element analyses.  相似文献   

17.
A bulging intervertebral disc (IVD) occurs when pressure on a spinal disc damages the once healthy disc, causing it to compress or change its normal shape. In medicine, most attention has been paid clinically to diagnosis of and treatment for such problems, which little effect has been made to understand such issues from a mechanics perspective, i.e., the bulging deformation of the soft IVD induced by excessive compressive load. We report herein a simple elasticity solution to understand the bulging disc issue. For simplicity, the soft IVD is modeled as an incompressible circular composite layer consisting of an inner nucleus and outer annulus, sandwiched between two vertebral segments which are much stiffer than the IVD and can be treated as rigid bodies. Without adopting any assumptions regarding prescribed displacements or stresses, we obtained the stress and displacement fields within the composite layer when a certain compressive stain is applied via an asymptotic approach. This asymptotic approach is very simple and accurate enough for prediction of the bugling profile of the IVD. We also performed finite-element modeling (FEM) to validate our solutions; the predicted stress and displacement fields inside the composite are in good agreement with the FEM results.  相似文献   

18.
Here, the large amplitude free flexural vibration behavior of symmetrically laminated composite skew plates is investigated using the finite element method. The formulation includes the effects of shear deformation, in-plane and rotary inertia. The geometric non-linearity based on von Kármán's assumptions is introduced. The nonlinear matrix amplitude equation obtained by employing Galerkin's method is solved by direct iteration technique. Time history for the nonlinear free vibration of composite skew plate is also obtained using Newmark's time integration technique to examine the accuracy of matrix amplitude equation. The variation of nonlinear frequency ratios with amplitudes is brought out considering different parameters such as skew angle, fiber orientation and boundary condition.  相似文献   

19.
The aeroelastic instability of composite wings modeled as Circumferentially Asymmetric Stiffness (CAS) thin-walled composite beams with closed cross-section is carried out. The objective has been to investigate the effects of different assumptions of constitutive equations on the aeroelastic instability behavior. Non-classical effects such as restrained warping and transverse shear are included in the beam model. The unsteady incompressible airloads are presented using Wagner׳s function. A comparison of the results based on different constitutive equations for a number of configurations including three types of stacking sequence for a box cross-section and two types of stacking sequence for a biconvex cross-section, is performed. The effects of the values of twist as well as twist-bending stiffness coefficients have been studied carefully on the results. As an outcome of this investigation it is revealed that the different choices of structural constitutive equations which result in different values of stiffness quantities; namely, twist and twist-bending stiffness, significantly affect the predicted results. For example, a difference of up to 45% in the aeroelastic critical speed has been observed between different sets of constitutive equations in some cases.  相似文献   

20.
In this paper, the composite nonlinear feedback (CNF) method for robust tracking control of multivariable time-delayed systems with input saturation is proposed. By constructing an appropriate Lyapunov–Krasovskii functional and using the linear matrix inequality (LMI) technique, the asymptotic tracking criteria is derived in terms of LMI, which can be solved numerically using the LMI® toolbox of MATLAB. Unlike the previous robust tracking controller design methods, which need restrictive assumptions, less conservative design conditions are obtained using this approach. The proposed CNF-based robust tracking controller improves the transient performance and steady state accuracy simultaneously. Simulation results are included to demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号