首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A criterion of ductile fracture is proposed, which takes into account the singular character of theoretical solutions near the maximum friction surfaces and the emergence of a thin layer with intense plastic strains near surfaces with high friction stresses in real processes of metal forming. The equation for the thickness of the layer with intense plastic strains and the fracture criterion include the strain rate intensity factor, apparently, characterizing the intensity of physical processes that occur in a thin material layer near the friction surfaces. Some experimental data are used to determine the thickness of this layer. The ductile fracture criterion is analyzed by solving the problem of strip extrusion under conditions of plane strain deformation.  相似文献   

2.
This paper presents a modified hole-drilling technique for measuring residual stresses in sheet and thin-plate materials. The primary advantage of the modification is that it eliminates the necessity for calibration of each experimental hole-gage assembly. The relaxation coefficients are calculated from theory, and the strain components which are extraneous to the true relaxation strains are determined and separated from the measured relaxation strains. Experiments were conducted on 0.050-in. (1.27-mm) and 0.125-in. (3.175-mm)-thickness aluminum-alloy specimens. Sources of extraneous strain components are analyzed and values for these strain components resulting from machining residual stresses and localized plastic yielding are determined. Finally, the recommended range of the nondimensional ratio of hole diameter to distance between hole center and strain-gage center is determined by the maximum permissible error in residual-stress estimates. The modified technique appears to be accurate within ±5 percent or better and is, therefore, comparable in precision with the X-ray technique.  相似文献   

3.
An experimental investigation was conducted to study the behavior under biaxial-tensile loading of [O2/±45] s graphite/epoxy plates with circular holes and to determine the influence of hole diameter on failure. The specimens were 40-cm×40-cm (16-in.×16-in.) graphite/epoxy plates of [O2/±45] s layup. Four hole diameters, 2.54 cm (1.00 in.), 1.91 cm (0.75 in.), 1.27 cm (0.50 in.) and 0.64 cm (0.25 in.), were investigated. Deformations and strains were measured using strain gages and birefringent coatings. Biaxial tension in a 2∶1 ratio was applied by means of four whiffle-tree grip linkages and controlled with a servohydraulic system. Stress and strain redistributions occur around the hole at a stress level corresponding to localized failure around the 67.5-deg location and nonlinear strain response at the 0-deg location. Maximum measured strains at failure on the hole boundary are higher (approximately 0.016) than the highest ultimate strain of the unnotched laminate (0.010). Two basic patterns of failure were observed: (a) horizontal cracking initiating at points off the horizontal axis and accompanied by extensive delamination of the subsurface ±45 deg plies, and (b) vertical cracking along vertical tangents to the hole and accompanied by delamination of the outer 0-deg plies. The strength reduction ratios are lower than corresponding values for uniaxial loading by approximately 16 percent, although the stress-concentration factor under biaxial loading is lower.  相似文献   

4.
材料的应变疲劳寿命与裂端的塑性应变有关。研究孔边循环应变与疲劳循环次数的相关性,对于研究材料损伤及微裂纹的产生,预防宏观裂纹的产生及扩展具有十分重要的意义。所以本文对有限宽板中心带孔试件进行了拉伸疲劳试验,用以研究这种相关性。在疲劳试验前首先进行逐级的加、卸载缓慢循环实验,同时利用数字图像相关技术测量孔周的位移场,进而求出孔边应变。在疲劳试验过程中,每当疲劳循环1500次就停机,进行同样的缓慢循环实验,并测量出孔周的位移场及孔边应变。实验研究中获得了一些很重要的结果。  相似文献   

5.
A practical theory for swaging bored holes within plates and cylinders is proposed which can take into account work-hardening in the presence of small plastic strains based upon equivalent stress-strain data. With the appropriate choice of yield function, this theory applies to the swaging of both thin and thick plates under respective plane stress and plane strain conditions. The theory can be adapted further to the autofrettage of open and closed-ended, thick-walled cylinders where similar plane deformations conditions apply. Here swaging refers to the practice in which an oversized plug or sphere is forced into the bore thereby expanding it permanently to leave a residual circumferential compression in the bore material upon removal of the expanding tool. A similar effect results from applying an initial over-pressure to a long thick-walled cylinder in an autofrettage process. Both treatments are employed to enhance the fatigue resistance when the service loading upon the disc or cylinder amounts to a cyclic, circumferential tension within its bore. Strain gauges bonded to the entry face of the plate are used to monitor the circumferential and radial strain distributions both during and after the swaging process. Experimental results presented for swaging of thin and thin annular discs in aluminium alloy show that the measured residual strain distributions concord with the theory for large discs with a 10/1 diameter ratio. The agreement is less satisfactory with the loss in axial symmetry for parallel-sided lugs with a width to hole diameter ratio of 4/1.  相似文献   

6.
单晶镍基合金具有优异的耐高温、高强、高韧等性能, 这些力学性能受制造过程引入的次级取向和冷却孔的影响. 已有研究大多关注单孔薄板的变形机理和力学性能, 而工程中应用的往往是多孔薄板, 当前亟需阐明多孔的塑性滑移带变形机理、次级取向效应以及冷却孔引起的应变梯度效应. 文章采用基于位错机制的非局部晶体塑性本构模型对含冷却孔镍基单晶薄板的单拉变形进行了数值模拟. 此模型基于塑性滑移梯度与几何必需位错的关系引入了位错流动项, 因此可有效刻画非均匀变形过程中的应变梯度效应. 为了全面揭示含孔镍基薄板的次级取向效应, 系统研究了[100]和[110]取向(两种次级取向)下镍基薄板的单拉变形行为, 并重点探究了在两种次级取向下冷却孔数量对薄板塑性行为的影响. 此外, 还分析了镍基合金板变形过程中各个滑移系上分切应力变化、主导滑移系开动以及几何必需位错密度的演化过程, 并讨论了塑性滑移量及其分布特征对不同次级取向镍基合金板强度的影响. 研究表明, 单孔和多孔的[110]薄板抗拉强度均低于[100]薄板, 多孔薄板的塑性变形过程比单孔薄板更为复杂且受次级取向影响更大, 并且发生滑移梯度位置主要位于冷却孔附近以及塑性滑移带区域. 研究结果可为工程中镍基合金的设计和服役提供理论指导.   相似文献   

7.
The use of electrical-resistance metallic foil strain gages for measuring large plastic strain in dynamic experiments in studied. The maximum nominal strains obtained in this investigation are 35 percent in compression, 25 percent in tension. A linear variation of gage factor with strain is found in this range. The corrected maximum strains are in excellent agreement with permanent strains measured after the tests. Thus foil strain gages can be effectively used to measure the large dynamic plastic strains.  相似文献   

8.
The Poisson's ratio of a material is strictly defined only for small strain linear elastic behavior. In practice, engineering strains are often used to calculate Poisson's ratio in place of the mathematically correct true strains with only very small differences resulting in the case of many engineering amterials. The engineering strain definition is often used even in the inelastic region, for example, in metals during plastic yielding. However, for highly nonlinear elastic materials, such as many biomaterials, smart materials and microstructured materials, this convenient extension may be misleading, and it becomes advantageous to define a strainvarying Poisson's function. This is analogous to the use of a tangent modulus for stiffness. An important recent application of such a Poisson's function is that of auxetic materials that demonstrate a negative Poisson's ratio and are often highly strain dependent. In this paper, the importance of the use of a Poisson's function in appropriate circumstances is demonstrated. Interpretation methods for coping with error-sensitive data or small strains are also described.  相似文献   

9.
A basic ductile fracture testing program is carried out on specimens extracted from TRIP780 steel sheets including tensile specimens with a central hole and circular notches. In addition, equi-biaxial punch tests are performed. The surface strain fields are measured using two- and three-dimensional digital image correlation. Due to the localization of plastic deformation during the testing of the tensile specimens, finite element simulations are performed of each test to obtain the stress and strain histories at the material point where fracture initiates. Error estimates are made based on the differences between the predicted and measured local strains. The results from the testing of tensile specimens with a central hole as well as from punch tests show that equivalent strains of more than 0.8 can be achieved at approximately constant stress triaxialities to fracture of about 0.3 and 0.66, respectively. The error analysis demonstrates that both the equivalent plastic strain and the stress triaxiality are very sensitive to uncertainties in the experimental measurements and the numerical model assumptions. The results from computations with very fine solid element meshes agree well with the experiments when the strain hardening is identified from experiments up to very large strains.  相似文献   

10.
The elastic stress and strain fields of finite thickness large plate containing a hole are systematically investigated using 3D finite element method. It is found that the stress and strain concentration factors of the finite thickness plate are different even if the plate is in elasticity state except at notch root of plate surface. The maximum stress and strain do not always occur on the mid plane of plate. They occur on the mid plane only in thin plate. The maximum stress and strain concentration factors are not on mid plane and the locations of maximum stress and strain concentration factors are different in thick plate. The maximum stress and strain concentration factors of notch root increase from their plane stress value to their peak values, then decrease gradually with increasing thickness and tend to each constant related to Poisson’s ratio of plate, respectively. The stress and strain concentration factors at notch root of plate surface are the same and are the monotonic descent functions of thickness. Their values decrease rapidly and tend to each constant related to Poisson’s ratio with plate thickness increasing. The difference between maximum and surface value of stress concentration factor is a monotonic ascent function of thickness. The thicker the plate is or the larger the Poisson’s ratio is, the larger the difference is. The corresponding difference of strain concentration factor is similar to the one of stress concentration factor. But the difference magnitude of stress concentration factor is larger than that of strain concentration factor in same plate.  相似文献   

11.
An experimental investigation was conducted to study the behavior under biaxial tensile loading of quasiisotropic graphite/epoxy plates with circular holes and to determine the influence of hole diameter on failure. The specimens were 40 cm×40 cm (16 in.×16 in.) laminates of [0/±45/90] s layup. Four hole diameters, 2.54 cm (1.00 in.), 1.91 cm (0.75 in.), 1.27 cm (0.50 in.) and 0.64 cm (0.25 in.), were investigated. Deformations and strains were measured using strain gages and birefringent coatings. Equal biaxial loading was introduced by means fo four whiffle-tree grip linkages and controlled with a servohyraulic system. Initially, the circumferential strain is uniform around the boundary of the hole. Subsequently, with increasing load, regions of high strain concentration with nonlinear response develop at eight characteristic locations 22.5 deg off the fiber axes. Failure in the form of cracking and delamination initiates at these points. Maximum strains at failure on the hole boundary reach values up to twice the ultimate strain of the unnotched laminate. The effect of hole diameter on strength was described satisfactorily using an average biaxial-stress criterion. Good correlation was also obtained with theoretical predictions based on a tensor-polynomial failure criterion for the lamina and a progressive degradation model.  相似文献   

12.
The dynamic response of fully clamped, monolithic and sandwich plates of equal areal mass has been measured by loading rectangular plates over a central patch with metal foam projectiles. All plates are made from AISI 304 stainless steel, and the sandwich topologies comprise two identical face-sheets and either Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the plates as a function of projectile momentum. At low levels of projectile momentum both types of sandwich plate deflect less than monolithic plates of equal areal mass. However, at higher levels of projectile momentum, the sandwich plates tear while the monolithic plates remain intact. Three-dimensional finite element (FE) calculations adequately predict the measured responses, prior to the onset of tearing. These calculations also reveal that the accumulated plastic strains in the front face of the sandwich plates exceed those in the monolithic plates. These high plastic strains lead to failure of the front face sheets of the sandwich plates at lower values of projectile momentum than for the equivalent monolithic plates.  相似文献   

13.
等径通道挤压过程三维有限元模拟   总被引:2,自引:0,他引:2  
利用三维有限元模型对等径通道挤压过程中变形分布的不均匀性进行了模拟,通过对不同摩擦系数下截面等效塑性应变分布比较发现:沿三个方向截面上的变形分布都不是均匀的,这说明二维有限元模型不能真实模拟等径通道挤压过程中试样中的变形分布。此外,摩擦对等效塑性应变分布及挤压力的影响较大,截面变形不均匀参数和最大等效塑性应变出现的位置随摩擦系数的增大而变化。压力-位移曲线的变化可以结合试样的变形过程来解释。  相似文献   

14.
For the Charpy V-notch test the influence of strain rate on competing failure mechanisms is analyzed numerically. The nucleation and growth of micro-voids is represented in terms of an elastic-viscoplastic constitutive model, which describes the mechanism of ductile fracture by void coalescence. Failure by cleavage is assumed to occur if the maximum principal tensile stress exceeds a certain critical value. Attention is focused on the temperature regime where the transition in fracture mode between cleavage and ductile rupture takes place. In the analyses the temperature is taken as constant and the effect of inertia is neglected, so that time dependence enters only through the material strain rate sensitivity. The material model is found to reproduce the experimentally observed change in failure mode from predominantly ductile fracture at low strain rates, to cleavage fracture at high strain rates. The numerical results show that in the transition regime, the porosity in the notch tip region plays a role in the fracture process even when failure occurs by cleavage. Once the transition of failure mode from cleavage to ductile rupture has occurred, the energy absorbed at low rates is greater than that absorbed at high rates.  相似文献   

15.
Wind tunnel experiments were conducted for the flow around a single flat plate and through an array of three parallel flat plates at different angles of incidence to compare their lift and drag coefficients for several values of the Reynolds number around 105 and for three aspect ratio values. The selected cascade configuration is of interest for a particular type of tidal hydrokinetic energy converter. The main differences in the lift and drag forces are discussed, finding that for a plate in a cascade the maximum lift coefficient takes place at a quite different angle of attack, depending on the aspect ratio. The optimal conditions for extracting power from a tidal current are analyzed.  相似文献   

16.
The use of electrical-resistance foil strain gages for the measurement of plastic-wave profiles is investigated. It is shown that the wave speeds and maximum strains are obtained to about the same accuracy as optical techniques. It should be noted that the plastic wave speed and the maximum strain are the two most important parameters which are used to infer dynamic response of a material.  相似文献   

17.
18.
Minimizing the stress concentration around holes in uniaxially loaded finite plates is an important consideration in engineering design. One method for reducing the stress concentration around a central circular hole in a uniaxially loaded plate is to introduce smaller auxiliary holes on either side of the original hole to help smooth the flow of the tensile principal-stress trajectories past the original hole. This method has been demonstrated by Heywood and systematically studied by Erickson and Riley. Erickson and Riley show that for a central-hole diameter-to-plate width ratio of 0.222, the maximum stress reduction is up to 16 percent. In recent work, Durelliet al. show that the stress concentrations around holes in uniaxially loaded plates can be minimized by changing the hole shape itself till an optimum hole profile with constant stress values respectively on the tensile and compressive segments of the hole boundary is reached. By this technique the maximum stress reduction obtained for the above case is up to 20 percent. In the present work, starting with the optimum sizes and locations of central and auxiliary circular holes for a finite plate given by Erickson and Riley, a systematic study of the hole-shape optimization is undertaken. A two-dimensional photoelastic method is used. For a central-hole diameter-to-plate width ratio of 0.222, the reduction in stress-concentration factor obtained after hole-shape optimization is about 30 percent. It is also shown that it is possible to introduce the ‘equivalent ellipse’ concept for optimized holes.  相似文献   

19.
Experimental and finite-element analyses are presented for the anisotropic states of stress, strain and fracture of a glass-epoxy plate containing a circular hole and subjected to uniaxial tension. Strains were experimentally measured using foil gages, moiré and birefringent coating. Stresses are computed in the linear range from the measured strains. While the hole reduces the plate strength by a factor of two, the maximum tensile strain at fracture is greater than the ultimate strain in a plate without a hole. Fracture consists of crack initiation at the hole boundary but off the horizontal axis. Away from the hole, failure is accompanied by considerable delamination. Discontinuous crack propagation is present.  相似文献   

20.
A theoretical rigid-plastic analysis for the dynamic shear failure of beams under impulsive loading is presented when using a travelling plastic shear hinge model which takes into account material strain hardening. The maximum dynamic shear strain and shear strain-rate can be predicted in addition to the permanent transverse deflections and other parameters. The conditions for the three modes of shear failure, i.e., excess deflection failure, excess shear strain failure and adiabatic shear failure are analyzed. The special case of an infinitesimally small plastic zone is discussed and compared with Nonaka's solution for a rigid, perfectly plastic material. The results can also be generalized to examine the dynamic response of fibre-reinforced beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号