首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Li Qi  Yan Shang  Fangying Wu 《Mikrochimica acta》2012,178(1-2):221-227
We report on a colorimetric probe for the determination of Pb(II). It is based on the use of silver nanoparticles that have been functionalizd with iminodiacetic acid (IDA-Ag NPs). The absorption spectrum and solution color of IDA-Ag NPs undergo dramatic changes on exposure to Pb(II) with a new absorption peak appearing at 650 nm and a concomitant color change from yellow to green. This is assumed to result from the aggregation of IDA-Ag NPs induced by Pb(II). Under optimum conditions, there is a linear relationship between the ratio of the absorbances at 650 and 396 nm, respectively, and the concentration of Pb(II) in the 0.4 to 8.0 μM concentration range, with a detection limit of 13 nM. The method was applied to the determination of Pb(II) in tap water and urea samples, and recoveries ranged from 93.7 % to 98.6 %.
Figure
A colorimetric probe based on iminodiacetic acid-functionalized silver nanoparticles (IDA-Ag NPs) was obtained and used for determination of Pb2+. The color change from yellow to green was assumed to result from the aggregation of the NPs induced by Pb(II) ions. The assay was possessed highly selectivity to lead(II) over the other ions.  相似文献   

2.
We describe a simple and rapid method for colorimetric and bare-eye detection of the alkaline earth metal ions Mg(II), Ca(II), Sr(II) and Ba(II) based on the use of silver nanoparticles (AgNPs) functionalized with thioglycolic acid (TGA). The TGA ligand was self-assembled onto the AgNPs to form a probe that undergoes a color change from yellow to orange or red on exposure to the alkaline earth ions. It is presumed that the color change is a result of the aggregation of the AgNPs caused by the interaction of the bivalent ions with the carboxy groups on the AgNPs. The color change can be used for bare-eye and colorimetric determination of the alkaline earth metal ions, for example to rapidly determine water hardness.
Figure
We have developed an efficient colorimetric method for alkaline earth metal ions using silver nanoparticles functionalized with thioglycolic acid as probe. This probe selectively recognizes alkaline earth metal ions through a distinct visual color change from yellow to red.  相似文献   

3.
A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi–CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi–CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of ?0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0–400 μmol L?1, with a very low limit of detection of 1.0 μmol L?1 (s/n?=?3). The operational stability of the uricase/Chi–CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis–Menten constant of 0.21 mmol L?1 indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P?>?0.05).
Figure
An amperometric uric acid biosensor was developed by immobilized uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited silver nanoparticles layer (AgNPs) on gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimal applied potential of -0.35 V vs Ag/AgCl based on the change of the reduction current for dissolved oxygen.  相似文献   

4.
We describe a method for the modification of gold nanoparticles (Au-NPs) with benzo-15-crown-5 that led to the development of a colorimetric assay for Ag(I) ion. The brown color of a solution of the modified Au-NPs turns to purple on addition of Ag(I) ion. The ratio of the UV–vis absorption at 600 nm and 525 nm is proportional to the concentration of Ag(I) ions in the range from 20 to 950 nM, and the detection limit is 12.5 nM. Other metal ions do not interfere if present in up to millimolar concentrations. The method enables a rapid determination of Ag(I) in lake and drinking water and is amenable to bare-eye readout.
Figure
The selective colorimetric detection of Ag+ ion using gold nanoparticles modified with benzo crown ether is reported with a color detection limit ~50 nM by naked-eye. The feasibility and simplicity of this cost-effective sensing system demonstrates great potential for the detection of sliver ion in real samples.  相似文献   

5.
We report on a novel method for visual detection silver(I) ion. It is based on the finding that Ag(I) ions are rapidly reduced by hydroquinone to form a shell of silver on the surface of gold nanoparticles (AuNPs) which act as catalysts for this reaction. This leads to a color change from red to yellow which can be seen with bare eyes. This scheme is sensitive and highly specific for Ag(I) ions. The detection limits are 5 μM for visual inspection and 1 μM for photometric readout, respectively. The method was successfully applied to the determination of Ag(I) ions in spiked lake water and soil.
A novel visual detection method based on the catalysis of gold nanoparticles was developed for the determination of Ag+ in the lake water and soil.  相似文献   

6.
We have developed a colorimetric method for the determination of Pb(II) ions. It is based on the use of gold nanoparticles and a guanine-rich synthetic oligonucleotide. On addition of Pb(II), the color of the solution turns from red to blue. The ratio of the UV-vis absorption at 630?nm and 525?nm is proportional to the concentration of Pb(II) ions in the range from 10 to 100?nM, and the detection limit is 20?nM. Other metal ions do not interfere if present in up to a 10-fold molar excess. The method was successfully applied to the detection of Pb(II) in lake water and urine. The recovery in case of spiked samples is 92%. The results show that this method is sensitive, simple and fast.
Figure
A new colorimetric method which was based on gold nanoparticles and Guanine-rich oligonucleotide has been developed to determine Pb2+ in lake water and urine.  相似文献   

7.
Water–soluble fluorescent silver nanoclusters (Ag NCs) were prepared with the assistance of commercially available polyinosinic acid (PI) or polycytidylic acid (PC). The fluorescence of the Ag NCs is effectively quenched by trace mercury(II) ions, which can be applied for their detection. The response of the Ag NCs prepared with PI to Hg(II) ion is linear in the Hg(II) concentration range from 0.05 to 1.0 μM (R2?=?0.9873), and from 0.5 to 10 μM of Hg(II) (R2?=?0.9971) for Ag NCs prepared with PC. The detection limits are 3.0 nM and 9.0 nM (at an S/N of 3), respectively. The method is simple, sensitive and fairly selective.
Figure
Water-soluble fluorescent Ag nanoclusters (NCs) were facilely prepared using commercially available polyinosinic acid or polycytidylic acid. The fluorescence intensity of the as-prepared Ag NCs was effectively quenched by trace Hg2+, which was used for the detection of Hg2+ in water samples with good performance.  相似文献   

8.
Shuttle-like Fe2O3 nanoparticles (NPs) were prepared by microwave-assisted synthesis and characterized by scanning electron microscopy and X-ray diffraction. The NPs were immobilized on a glassy carbon electrode and then covered with dsDNA. The resulting electrode gives a pair of well-defined redox peaks for Pb(II) at pH 6.0, with anodic and cathodic peak potentials occurring at ?0.50?V and ?0.75?V (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.12 to 40?nM, and the detection limit is 0.1?nM at a signal-to-noise ratio of 3. The sensor exhibits high selectivity and reproducibility.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by dropping Fe2O3 NPs and double-strand DNA onto the pretreated glassy carbon electrode. The sensor had high sensitivety, high sensitivity, ease of construction and utilization for Pb(II) determination.  相似文献   

9.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

10.
The fragmentations of [AA + M]+ complexes, where AA = Phe, Tyr, Trp, or His, and M is a monovalent metal (Li, Na, or Ag), have been exhaustively studied through collision-induced dissociation (CID) and through deuterium labeling. Dissociations of the Li- and Ag-containing complexes gave a large number of fragment ions; by contrast, the sodium/amino acid complexes have lower binding energies, and dissociation resulted in much simpler spectra, with loss of the entire ligand dominating. Unambiguous assignments of these fragment ions were made and formation mechanisms are proposed. Of particular interest are fragmentations in which the charge was retained on the organic fragment and the metal was lost, either as a metal hydride (AgH) or hydroxide (LiOH) or as the silver atom (Ag?).
Caption for Graphical Abstract
CID products of Li+, Na+, and Ag+ complexes of Phe, Tyr, Trp, and His are reported and mechanisms by which they are formed are proposed.  相似文献   

11.
Silver nanoparticles (Ag NPs) modified with sodium 2-mercaptoethanesulfonate (mesna) exhibit strong surface-enhanced Raman scattering (SERS). Their specific and strong interaction with heavy metal ions led to a label-free assay for Hg(II). The covalent bond formed between mercury and sulfur is stronger than the one between silver and sulfur and thus prevents the adsorption of mesna on the surface of Ag NPs. This results in a decrease of the intensity of SERS in the presence of Hg(II) ions. The Raman peak at 795?cm?1 can be used for quantification. The effect of the concentration of mesna, the concentration of sodium chloride, incubation time and pH value on SERS were optimized. Under the optimal conditions, the intensity of SERS decreases with increasing concentration of Hg(II). The decrease is linear in the 0.01 and 2?μmol L?1 concentration range, with a correlation coefficient (R2) of 0.996 and detection limit (S/N?=?3) is 0.0024?μmol L?1. The method was successfully applied to the determination of the Hg(II) in spiked water samples.
Figure
SERS spectra of mesna-Ag NPs system in the presence of Hg2+. Concentrations of Hg2+: (1) 0.1×10-7, (2) 1×10-7, (3) 3.5×10-7, (4) 5×10-7, (5) 12×10-7, (6) 20×10-7mol L-1  相似文献   

12.
We have developed a sensitive chemiluminescent (CL) assay for cysteine. It is based on the use of water-soluble and fluorescent silver nanoclusters (Ag NCs) which are found to be able to strongly enhance the weak CL signal resulting from the redox reaction between Ce(IV) ion and sulfite ion. This enhancement is inhibited by cysteine under appropriate conditions. Taking advantage of this specific CL inhibition, a novel CL method for the sensitive and selective detection of cysteine was developed. This effect is interpreted in terms of an electronic energy transfer from excited state intermediate sulfur dioxide (originating from the CL reaction between Ce(IV) and sulfite ions) to the Ag-NCs. The latter become electronically excited and thus can act as a new source of emission. The method was applied to the determination of cysteine in the range from 5.0?nM to 1.0?μM, with a detection limit at 2.5?nM (S/N?=?3).
Figure
In the presence of Ag NCs that can act as luminophors and energy acceptors, the weak CL signal resulting from the redox reaction between Ce (IV) ion and sulfite ion can be significantly enhanced, and this enhanced CL system can then be inhibited by cysteine under suitable conditions  相似文献   

13.
We report on the first application of novel, water-soluble and fluorescent silver nanoclusters (Ag NCs) in a chemiluminescent (CL) detection system. A method has been developed for the determination of copper(II) ion that is based on the fact that the weak CL resulting from the redox reaction between Ce(IV) ion and sulfite ion is strongly enhanced by the Ag NCs and that the main CL signals now originate from Ag NCs. UV-visible spectra, CL spectra and fluorescent (FL) spectra were acquired to investigate the enhanced CL mechanism. It is proposed that the electronic energy of the excited state intermediate SO2* that originates from the CL reaction is transferred to Ag NCs to form an electronically excited NC whose emission is observed. In addition, it is found that copper(II) is capable of inhibiting the CL of the nanoclusters system, but not if other common metal ions are present. The detection of copper(II) is achieved indirectly by measuring the CL intensity of Ag NCs. Under the optimized experimental conditions, a linear relationship does exist between the intensity of CL and the concentrations of copper(II) in the range of 0.2?nM to 0.1?m??. The detection limit is 0.12?nM. The method is applied to the determination of copper(II) ion in tap water with satisfactory results.
Figa
We report the first application of novel, water-soluble and fluorescent silver nanoclusters in a chemiluminescent detection system. It was found that Ag NCs acted as the luminophor and energy acceptor. A method has been developed for the determination of copper(II) ion that is based on the fact that the capable of inhibiting the CL of the nanoclusters system.  相似文献   

14.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

15.
We have developed a method for the colorimetric determination of copper ions (Cu2+) that is based on the use of silver-coated gold nanorods (Au@Ag NRs). Its outstanding selectivity and sensitivity result from the catalytic leaching process that occurs between Cu2+, thiosulfate (S2O3 2?), and the surface of the Au@Ag NRs. The intrinsic color of the Au@Ag NRs changes from bright red to bluish green with decreasing thickness of the silver coating. The addition of Cu2+ accelerates the leaching of silver from the shell caused in the presence of S2O3 2?. This result in a decrease in the thickness of the silver shell which is accompanied a change in color and absorption spectra of the colloidal solution. The shifts in the absorption maxima are linearly related to the concentrations of Cu2+ over the 3–1,000 nM concentration range (R?=?0.996). The method is cost effective and was applied to the determination of Cu2+ in real water samples.
Figure
A facile and sensitive colorimetric strategy for the sensing of Cu2+ based on catalytic leaching of silver coated gold nanorods, Au@Ag NRs  相似文献   

16.
An electrode sensitive to uric acid was prepared by electrodeposition of nickel(II) hexacyanoferrate(III) on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes. The morphology of the material was characterized by scanning electron microscopy and Fourier transform infrared spectrometry. The modified electrode were characterized via cyclic voltammetry and amperometry (i - t). It exhibited efficient electron transfer ability and a strong and fast (< 3?s) response towards uric acid which is linear in the range from 0.1???M to 18???M, with a lower detection limit of 50 nM (at an S/N ratio of 3). In addition, the electrode exhibited good reproducibility and long-term stability.
Figure
A fast and sensitive uric acid electrochemical sensor has been fabricated by electrodepositing nickel hexacyanoferrate nanoparticles onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor had excellent stability, rapid response, ease of construction and utilization for uric acid determination  相似文献   

17.
We report on a fluorometric method for the determination of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MOXI). It is based on the Tb(III)-sensitized luminescence that is plasmonically enhanced by silver nanoparticles (Ag NPs). The emission of the Tb(III) complexes has maximum at 545?nm after excitation at 284?nm and is strongly enhanced in the presence of the colloidal Ag NPs. Under optimum experimental conditions, luminescence intensity increases linearly with the concentration in the range from 4.16?×?10-17-3.59?×?10-15?M of LEV, and from 4.98?×?10-17-2.49?×?10-15?M for MOXI with correlation coefficients of 0.9996 and 0.9996, respectively. The limits of detection are 7.19?×?10-18?M and 8.47?×?10-18?M, respectively, and the relative standard deviations are 1.3 and 1.5% for 5 replicate measurements at 6.08?×?10-14?M of LEV and 5.48?×?10-14?M of MOXI. The method was successfully applied to the determination of LEV and MOXI in pharmaceutical samples, in urine and in serum.
Figure
A new luminescent terbium(III)-fluoroquinolones (FQs) framework with silver nanoparticles exhibits a highly sensitive fluorescent response towards Tb3+ ion. The luminescence intensity of the framework was enhanced significantly by Ag NPs with the concentration of FQs which showed a good linear relationship and detection limit.  相似文献   

18.
We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35?nM.
Figure
A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.  相似文献   

19.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

20.
The fabrication of highly dense gold nanoparticles (NPs)-coated sulfonated polystyrene (PS) microspheres and their application in surface-enhanced Raman spectroscopy (SERS) were reported. After the preparation of PS microsphere using dispersion polymerization and subsequent sulfonation, [Ag(NH3)2]+ ions were adsorbed on the surfaces of the sulfonated PS microspheres and then reduced to silver nanoseeds for further growth of gold NPs shell by seeded growth approach. Reaction conditions such as the concentration of the growth solution and growth time were adjusted to achieve nonspherical gold NPs-coated PS microspheres with different coverage degree. The application of the as-prepared spiky gold NPs-coated PS microsphere hybrid composite in SERS was finally investigated by using 4-aminothiophenol as probe molecules. The results showed that as-prepared gold NPs-coated PS microspheres could be used as functional hybrid materials to exhibit excellent enhancement ability in SERS.
Figure
High dense gold nanoparticle shell coated sulfonated polystyrene microspheres for SERS application  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号