首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

2.
For each n let ${Y^{(n)}_t}$ be a continuous time symmetric Markov chain with state space ${n^{-1} \mathbb{Z}^d}$ . Conditions in terms of the conductances are given for the convergence of the ${Y^{(n)}_t}$ to a symmetric Markov process Y t on ${\mathbb{R}^d}$ . We have weak convergence of $\{{Y^{(n)}_t: t \leq t_0\}}$ for every t 0 and every starting point. The limit process Y has a continuous part and may also have jumps.  相似文献   

3.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

4.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

5.
We generalize the well-known Lax-Milgram theorem on the Hilbert space to that on the Banach space. Suppose that ${a(\cdot, \cdot)}$ is a continuous bilinear form on the product ${X\times Y}$ of Banach spaces X and Y, where Y is reflexive. If null spaces N X and N Y associated with ${a(\cdot, \cdot)}$ have complements in X and in Y, respectively, and if ${a(\cdot, \cdot)}$ satisfies certain variational inequalities both in X and in Y, then for every ${F \in N_Y^{\perp}}$ , i.e., ${F \in Y^{\ast}}$ with ${F(\phi) = 0}$ for all ${\phi \in N_Y}$ , there exists at least one ${u \in X}$ such that ${a(u, \varphi) = F(\varphi)}$ holds for all ${\varphi \in Y}$ with ${\|u\|_X \le C\|F\|_{Y^{\ast}}}$ . We apply our result to several existence theorems of L r -solutions to the elliptic system of boundary value problems appearing in the fluid mechanics.  相似文献   

6.
A group G is called a ${\mathcal {T}_{c}}$ -group if every cyclic subnormal subgroup of G is normal in G. Similarly, classes ${\mathcal {PT}_{c}}$ and ${\mathcal {PST}_{c}}$ are defined, by requiring cyclic subnormal subgroups to be permutable or S-permutable, respectively. A subgroup H of a group G is called normal (permutable or S-permutable) cyclic sensitive if whenever X is a normal (permutable or S-permutable) cyclic subgroup of H there is a normal (permutable or S-permutable) cyclic subgroup Y of G such that ${X=Y \cap H}$ . We analyze the behavior of a collection of cyclic normal, permutable and S-permutable subgroups under the intersection map into a fixed subgroup of a group. In particular, we tie the concept of normal, permutable and S-permutable cyclic sensitivity with that of ${\mathcal {T}_c}$ , ${\mathcal {PT}_c}$ and ${\mathcal {PST}_c}$ groups. In the process we provide another way of looking at Dedekind, Iwasawa and nilpotent groups.  相似文献   

7.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

8.
A double line ${C \subset \mathbb{P}^3}$ is a connected divisor of type (2, 0) on a smooth quadric surface. Fix ${(a, c) \in \mathbb{N}^2\ \backslash\ \{(0, 0)\}}$ . Let ${X \subset \mathbb{P}^3}$ be a general disjoint union of a lines and c double lines. Then X has maximal rank, i.e. for each ${t \in \mathbb{Z}}$ either ${h^1(\mathcal{I}_X(t)) = 0}$ or ${h^0(\mathcal{I}_X(t)) = 0}$ .  相似文献   

9.
Given X,Y two ${\mathbb{Q}}$ -vector spaces, and f : XY, we study under which conditions on the sets ${B_{k} \subseteq X, k=1,\ldots,s}$ , if ${\Delta_{h_1h_2 \cdots h_s}f(x) = 0}$ for all ${x \in X}$ and ${h_k \in B_k, k = 1,2,\ldots,s}$ , then ${\Delta_{h_1h_2\cdots h_{s}}f(x) = 0}$ for all ${(x,h_{1},\ldots,h_{s}) \in X^{s+1}}$ .  相似文献   

10.
Let K be a field, $\mathcal {O}_v$ a valuation ring of K associated to a valuation v: K → Γ?∪?{?∞?}, and m v the unique maximal ideal of $\mathcal {O}_v$ . Consider an ideal $\mathcal {I}$ of the free K-algebra $K\langle X\rangle =K\langle X_1,...,X_n\rangle$ on X 1,...,X n . If ${\cal I}$ is generated by a subset $\mathcal {G}\subset{\cal O}_v\langle X\rangle$ which is a monic Gr?bner basis of ${\cal I}$ in $K\langle X\rangle$ , where $\mathcal {O}_v\langle X\rangle =\mathcal{O}_v\langle X_1,...,X_n\rangle$ is the free $\mathcal{O}_v$ -algebra on X 1,...,X n , then the valuation v induces naturally an exhaustive and separated Γ-filtration F v A for the K-algebra $A=K\langle X\rangle /\mathcal {I}$ , and moreover $\mathcal{I}\cap\mathcal{O}_v\langle X\rangle =\langle\mathcal{G}\rangle$ holds in $\mathcal{O}_v\langle X\rangle$ ; it follows that, if furthermore $\mathcal{G}\not\subset {\bf m}_v{O}_v\langle X\rangle$ and $k\langle X\rangle /\langle\overline{\mathcal G}\rangle$ is a domain, where $k=\mathcal{O}_v/{\bf m}_v$ is the residue field of $\mathcal{O}_v$ , $k\langle X\rangle =k\langle X_1,...,X_n\rangle$ is the free k-algebra on X 1,...,X n , and $\overline{\mathcal G}$ is the image of $\mathcal{G}$ under the canonical epimorphism $\mathcal{O}_v\langle X\rangle\rightarrow k\langle X\rangle$ , then F v A determines a valuation function A → Γ?∪?{?∞?}, and thereby v extends naturally to a valuation function on the (skew-)field Δ of fractions of A provided Δ exists.  相似文献   

11.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

12.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

13.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

14.
In this paper, we prove stability of contact discontinuities for full Euler system. We fix a flat duct ${\mathcal{N}_0}$ of infinite length in ${\mathbb{R}^2}$ with width W 0 and consider two uniform subsonic flow ${{U_l}^{\pm}=(u_l^{\pm}, 0, pl,\rho_l^{\pm})}$ with different horizontal velocity in ${\mathcal{N}_0}$ divided by a flat contact discontinuity ${\Gamma_{cd}}$ . And, we slightly perturb the boundary of ${\mathcal{N}_0}$ so that the width of the perturbed duct converges to ${W_0+\omega}$ for ${|\omega| < \delta}$ at ${x=\infty}$ for some ${\delta >0 }$ . Then, we prove that if the asymptotic state at left far field is given by ${{U_l}^{\pm}}$ , and if the perturbation of boundary of ${\mathcal{N}_0}$ and ${\delta}$ is sufficiently small, then there exists unique asymptotic state ${{U_r}^{\pm}}$ with a flat contact discontinuity ${\Gamma_{cd}^*}$ at right far field( ${x=\infty}$ ) and unique weak solution ${U}$ of the Euler system so that U consists of two subsonic flow with a contact discontinuity in between, and that U converges to ${{U_l}^{\pm}}$ and ${{U_r}^{\pm}}$ at ${x=-\infty}$ and ${x=\infty}$ respectively. For that purpose, we establish piecewise C 1 estimate across a contact discontinuity of a weak solution to Euler system depending on the perturbation of ${\partial\mathcal{N}_0}$ and ${\delta}$ .  相似文献   

15.
We consider a closed semi-algebraic set ${X \subset \mathbb{R}^n}$ and a C 2 semi-algebraic function ${f : \mathbb{R}^n \rightarrow\mathbb{R}}$ such that ${f_{\vert X}}$ has a finite number of critical points. We relate the topology of X to the topology of the sets ${X \cap \{ f * \alpha \}}$ , where ${* \in \{\le,=,\ge \}}$ and ${\alpha \in \mathbb{R}}$ , and the indices of the critical points of ${f_{\vert X}}$ and ${-f_{\vert X}}$ . We also relate the topology of X to the topology of the links at infinity of the sets ${X \cap \{ f * \alpha\}}$ and the indices of these critical points. We give applications when ${X=\mathbb{R}^n}$ and when f is a generic linear function.  相似文献   

16.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

17.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

18.
The moduli space of smooth curves admits a beautiful compactification $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ by the moduli space of stable curves. In this paper, we undertake a systematic classification of alternate modular compactifications of $\mathcal{M}_{g,n}$ . Let $\mathcal{U}_{g,n}$ be the (non-separated) moduli stack of all n-pointed reduced, connected, complete, one-dimensional schemes of arithmetic genus g. When g=0, $\mathcal{U}_{0,n}$ is irreducible and we classify all open proper substacks of $\mathcal{U}_{0,n}$ . When g≥1, $\mathcal{U}_{g,n}$ may not be irreducible, but there is a unique irreducible component $\mathcal{V}_{g,n} \subset\mathcal{U}_{g,n}$ containing $\mathcal{M}_{g,n}$ . We classify open proper substacks of $\mathcal {V}_{g,n}$ satisfying a certain stability condition.  相似文献   

19.
Let ${n \in \mathbb{N}\backslash \{0, 1, 2\}}$ . We prove that there exists up to equivalence one and up to isomorphism (n+1)(2n+1) isometric embeddings of the near 2n-gon ${\mathbb{H}_n}$ into the near 2n-gon ${\mathbb{G}_n}$ .  相似文献   

20.
We establish Hölder estimates of second derivatives for a class of sub-elliptic partial differential operators in ${\mathbb{R}^{N}}$ of the kind $$\mathcal L=\sum_{i,j=1}^{m}a_{ij}(x)X_{i}X_{j}+X_{0},$$ where the X j ’s are smooth vector fields in ${\mathbb{R}^{N}}$ , and a ij is a uniformly elliptic matrix. It is assumed that the X j ’s satisfy homogeneity conditions with respect to a group of dilations δ r which yield the existence of a composition law ${\circ}$ in ${\mathbb{R}^{N}}$ making the triplet ${\mathbb G=(\mathbb{R}^{N},\circ,\delta_{r})}$ an homogeneous Lie group on which the X j ’s are left translation invariant. The Hölder norms are defined in terms of this composition law. The main tools used are the Taylor formula for smooth functions on ${\mathbb{G}}$ , some properties of the corresponding Taylor polynomials, and an orthogonality theorem that extends to homogeneous Lie groups a classical theorem of Calderón and Zygmund in the Euclidean setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号