In a novel application SERRS has been used, by employing a silver sol, to monitor and analyse the conversion of indigo into the indigo carmine dye. 相似文献
The competition between diffusive hops and direct tunneling of solvated electrons to scavenger molecules in solid classes has been discussed in the literature. We have considered these two reaction paths in terms of stationary kinetic diffusion equations and multiphonon electron-transfer rate theory, and for coupling of the solvated electron to a broad continuum of nuclear modes. Diffusion can only be expected to be important for less polar glasses. 相似文献
The adsorption of indigo carmine dye onto chitin and chitosan from aqueous solutions was followed in a batch system. The ability of these materials to adsorb indigo carmine dye from aqueous solution was followed through a series of adsorption isotherms adjusted to a modified Langmuir equation. The maximum number of moles adsorbed was 1.24 +/- 0.16 x 10(-5) and 1.54 +/- 0.03 x 10(-4) mol g(-1) for chitin and chitosan, respectively. The same interactions were calorimetrically followed and the thermodynamic data showed exothermic enthalpic values of -40.12 +/- 3.52 and -29.25 +/- 1.93 kJ mol(-1) for chitin and chitosan, respectively. Gibbs free energies for the two adsorption processes of indigo carmine dye presented a positive value for chitin and a negative one for chitosan, reflecting that dye/surface interactions are thermodynamic favorable for chitosan and nonspontaneous for chitin at 298.15 K. The interaction processes were accompanied by an increase of entropy value for chitosan (90 +/- 6 J mol(-1)K(-1)) and a decrease for chitin (-145 +/- 13 J mol(-1)K(-1)). Thus, dye/chitosan interaction showed favorable enthalpic and entropic processes, reflecting thermodynamic stability of the formed complex, while dye/chitin interaction showed an exothermic enthalpic value and a highly nonfavorable entropic effect, resulting in a nonspontaneous thermodynamic system. 相似文献
A photoinduced electron transfer (PET)-based chemosensor possessing dual PET processes by simultaneously introducing both nitrogen and sulfur donors was achieved. The fluorescence signal of the free chemosensor is in a normal-off state due to the sulfur donor being insensitive to environmental pH stimuli. As a result, the device can be used over a wide pH span of 3-11. Upon binding Al(3+), a significant fluorescence enhancement with a turn-on ratio over 110-fold was triggered by the inhibition of PET processes from both the sulfur and the nitrogen donors to the fluorophore. 相似文献
A new ferrocene derivative (1-[(4-amino) phenylethynyl]ferrocene, Fc-NH(2)) was synthesized for the first time. The ferrocene derivative molecule contained the phenylethynyl skeleton, ferrocene and amino groups with excellent electrochemical properties. The graphene/Fc-NH(2) nanocomposite was prepared by mixing graphene solution and Fc-NH(2) solution in one pot and the nanocomposite was utilized to construct a Nafion/graphene/Fc-NH(2) modified glassy carbon electrode (GCE). The ferrocene derivative immobilized on the graphene can enhance the charge-transport ability of the nanocomposite, stabilize the graphene and prevent the leakage of ferrocene. The detection signal of dopamine (DA) was significantly amplified on the Nafion/graphene/Fc-NH(2)/GCE. It was experimentally demonstrated that the signal enhancement results from the synergy amplification effect of graphene and the Fc-NH(2). The oxidation peak currents of DA were linearly related to the concentrations in the range of 5 × 10(-8) to 2 × 10(-4) M with the detection limit of 20 nM in the absence of uric acid (UA) and ascorbic acid (AA). In the presence of 10(-3) M AA and 10(-4) M UA, the linear response range was 1 × 10(-7) to 4 × 10(-4) M, and the detection limit was 50 nM at S/N = 3. Using the proposed Nafion/Fc-NH(2)/graphene/GCE, DA was successfully determined in real samples with the standard addition method. 相似文献
Silver chloride@polyaniline (PANI) core-shell (AgCl@PANI) nanocomposites were synthesized in the presence of polyvinylpyrrolidone (PVP). The obtained AgCl@PANI nanocomposites could be easily dispersed in aqueous media, which overcame the processible issues of PANI. Moreover, the nanocomposites showed excellent electrochemical behavior at pH neutral environment, and had inhibitive effect on oxidation of ascorbic acid. Fourier transform infrared spectrophotometry (FTIR) confirmed the existence of PVP in the nanocomposites. The C=O group of PVP is easy to form hydrogen bonding with the hydroxyl group of ascorbic acid, which can prevent ascorbic acid from oxidization. A selective dopamine biosensor was constructed based on the particular characteristic of the AgCl@PANI nanocomposites by the simple drop-coating. The biosensor could detect dopamine at its very low concentration in the presence of 5000 time concentration of ascorbic acid at neutral environment. 相似文献
Liquid crystal cubic phase formed with monoolein has been used as immobilizing matrix to host redox protein hemoglobin on glassy carbon electrode surface. The promoted direct electron transfer between hemoglobin and electrode was observed and a large average kinetic electron transfer rate constant k(s) of 3.03(±0.02)s(-1) was estimated. The electrode modified with cubic phase containing hemoglobin retains the bioactivity of hemoglobin and shows excellent bioelectrocatalytic activity to the reduction of hydrogen peroxide with a small apparent Michaelis-Menten constant of 0.25(±0.03)mM. A novel reagentless hydrogen peroxide biosensor was constructed using the hemoglobin-containing cubic phase modified electrode and the proposed hydrogen peroxide biosensor shows a linear range of 7.0-239μM with a detection limit of 3.1(±0.2)μM and good stability and reproducibility. 相似文献
Self-assembled monolayers of alpha-helical peptides were prepared on gold, and the effects of the monolayer structures (kind of constituent amino acid, molecular orientation, and molecular packing) on long-range electron transfer through the helical peptides were studied. The helical peptides were 16mer peptides having a thiophenyl linker at the N-terminal for immobilization on gold and a redox active ferrocene moiety at the C-terminal as an electron-transfer probe. The peptides were immobilized on gold by a gold-sulfur linkage and the electron transfer from the ferrocene moiety to gold was studied by electrochemical methods. When two types of the peptides, one with the repeating unit of Leu-Aib (Aib represents 2-aminoisobutyric acid) and the other with that of Ala-Aib, were compared, the electron transfer was found one order slower in the Leu-Aib peptide monolayer than that in the Ala-Aib peptide monolayer. The self-assembled monolayers of the Ala-Aib peptide with mixing of three different lengths of the peptides, 8mer, 12mer, and 16mer without a ferrocene moiety, were also prepared. The monolayer regularity in terms of molecular orientation and packing was higher roughly in the order of the monolayers mixed with 16mer > 12mer > no additive > 8mer, but the electron transfer became faster in the opposite order. The logarithms of the standard rate constants showed a nearly linear relationship with the direct distances between the ferrocene moiety and gold (beta = 0.32 A (-1)). Some data deviated from this linear relationship, but the deviations could be explained from the difference in the molecular packing, which was evaluated from the monolayer capacitance. It is thus concluded that an electron is transferred along a few molecules along the surface normal so that the vertical orientation or the increase of the interchain backbone separation slows down the electron transfer. Further, it is demonstrated that a tightly packed monolayer, where vibrational mode is restricted, suppresses the electron transfer. Three models are proposed to account for the observed molecular dynamics effects on the basis of either electron-transfer mechanism of electron tunneling or sequential hopping. 相似文献
The present paper describes the modification of hemoglobin (Hb)-octadecylamine (ODA) Langmuir-Blodgett (LB) film on a gold electrode surface to develop a novel electrochemical biosensor for the detection of hydrogen peroxide. Atomic force microscopy (AFM) image of Hb-ODA LB film indicated Hb molecules existed in ODA layer in a well-ordered and compact form. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of 4.58 ± 0.95 s−1 and a formal potential of −185 mV (versus Ag/AgCl) in phosphate buffer (1.0 mM, pH 5.0) contain 0.1 M KCl at a scan rate of 200 mV s−1, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The formal potential of Hb heme Fe(III)/Fe(II) redox couple in ODA film shifted linearly between pH 5 and 8 with a slope of −23.8 mV pH−1, suggesting that proton took part in electrochemical reaction. The ODA could accelerate the electron transfer between Hb and the electrode. This modified electrode showed an electrochemical activity to the reduction of hydrogen peroxide (H2O2) without the aid of any electron mediator. 相似文献
Octadecapeptides carrying a ferrocene moiety at the molecular terminal were self-assembled on gold, and long-range electron transfer from the ferrocene moiety to gold was investigated by electrochemical methods. Effects on electron transfer of dipole moment of helical peptides, linkers connecting the peptide to gold, and chromophores introduced into the side chains were discussed. Cyclic voltammetry of the monolayers in an aqueous solution revealed that long-range electron transfer over 40 A occurred along the peptide molecule. Chronoamperometry showed that the long-range electron transfer should be ascribed to a hopping mechanism with use of amide groups as hopping sites. Electron transfer through the long peptide was not significantly accelerated by the dipole moment. However, the linker remarkably affected electron transfer depending on whether it was a methylene chain or a phenylene group, suggesting that local electron transfer between gold and the peptides should be the slowest step to determine the overall rate. Pyrenyl groups introduced into the side chains in the middle of the peptide molecule did not noticeably change electron transfer, probably because pyrenyl groups were too distant to allow direct electron transfer between them. Electrostatic potential profiles across the peptide monolayers were also calculated to explain reasonably the several interesting features in the present peptide systems. 相似文献
A label-free electrochemical biosensor for detecting DNA hybridisation was developed by monitoring the change in the voltammetric
activity of ferrocenecarboxylic acid at the biosensor–solution interface. The biosensor was constructed by initially immobilising
on a glassy carbon electrode an anchoring layer consisting of chitosan, carboxyl group functionalised carbon nanofibres and
glutaraldehye. Chitosan acted as an adhering agent and carbon nanofibres were strategically used to provide a large surface
area with binding points for DNA immobilisation, while glutaraldehye was a linker for DNA probes on the electrode surface.
Based on a two-factorial design, cyclic voltammetry of [Fe(CN)6]3−/4− was performed to optimise the composition of the anchoring layer. Next, a 17-base pair DNA probe was attached to the anchoring
layer, followed by its complementary target. Zr(IV) ion, known to exhibit affinity for oxygen-containing electroactive markers,
for example, ferrocenecarboxylic acid, was then coordinated in the DNA duplex. In this way, ferrocenecarboxylic acid was attracted
towards the biosensor for oxidation. A change in the voltammetric oxidation current of ferrocenecarboxylic acid pre- and post-hybridisation
was used to provide an indication of hybridisation. A linear dynamic range between 0.5 and 40 nM and a detection limit of
88 pM of DNA target were then achieved. In addition, the biosensor exhibited good selectivity, repeatability and stability
for the determination of DNA sequences. 相似文献
Inspired by dual-signaling ratiometric mechanism which could reduce the influence of the environmental change, a novel, convenient, and reliable method for the detection of mercury ions (Hg2+) based on Y-shaped DNA (Y-DNA) was developed. Firstly, the Y-DNA was formed via the simple annealing way of using two different redox probes simultaneously, omitting the multiple operation steps on the electrode. The Y-DNA was immobilized on the gold electrode surface and then an obvious ferrocene (Fc) signal and a weak methylene blue (MB) signal were observed. Upon addition of Hg2+, the Y-DNA structure was transformed to hairpin structure based on the formation of T-Hg2+-T complex. During the transformation, the redox MB gets close to and the redox Fc gets far away from the electrode surface, respectively. This special design allows a reliable Hg2+ detection with a detection range from 1 nM to 5 μM and a low detection limit down to 0.094 nM. Furthermore, this biosensor exhibits good selectivity and repeatability, and can be easily regenerated by using l-cysteine. This study offers a simple and effective method for designing ratiometric biosensors for detecting other ions and biomolecules. 相似文献
Amperometric analysis of indigo carmine at a bare screen-printed electrode placed in an FIA system is reported. This compound is easily detected at a potential of -0.3 V (vs. Ag pseudo-reference electrode) without observing any fouling of the electrode surface, thus allowing the repetitive use of the same electrode in a reproducible manner (coefficients of variation down to 7% for more than 20 consecutive determinations). A linear range of three orders of magnitude and a limit of detection in the sub-micromolar range were attained for this molecule. Based on these studies, indirect amperometric measurements of alkaline phosphatase (ALP) activity in solution were easily carried out using 3-indoxyl phosphate substrate. Its hydrolysis catalyzed by ALP gave rise to indigo product. This product is insoluble in aqueous solutions but it was easily converted into its soluble parent compound, indigo carmine, by addition of fuming sulfuric acid to the reaction media. Using this approach, we achieved a linear range of more than one order of magnitude and a limit of detection of 1 U/l ALP, for an enzymatic reaction time of 60 min. 相似文献
The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection.
Graphical abstract An electrochemical strategy for sequence-specific DNA detection based on multicomponent nucleic acid enzyme (MNAzyme) -mediated signal amplification.
A positive charge, which was injected site selectively into adenine (A) of a DNA double strand, migrates along (A:T)n sequences in a distance independent way. 相似文献