首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hollow fiber membrane liquid-phase microextraction (LPME), target analytes are extracted from aqueous samples and into a supported liquid membrane (SLM) sustained in the pores in the wall of a small porous hollow fiber, and further into an acceptor phase present inside the lumen of the hollow fiber. The acceptor phase can be organic, providing a two-phase extraction system compatible with capillary gas chromatography, or the acceptor phase can be aqueous resulting in a three-phase system compatible with high-performance liquid chromatography or capillary electrophoresis. Due to high enrichment, efficient sample clean-up, and the low consumption of organic solvent, substantial interest has been devoted to LPME in recent years. This paper reviews important applications of LPME with special focus on bioanalytical and environmental chemistry, and also covers a new possible direction for LPME namely electromembrane extraction, where analytes are extracted through the SLM and into the acceptor phase by the application of electrical potentials.  相似文献   

2.
In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF-LPME, the analytes were extracted by passive diffusion from an alkaline sample, through a (organic) supported liquid membrane (SLM) and into an acidic acceptor solution. In EME, the analytes were extracted by electrokinetic migration from an acidic sample, through the SLM, and into an acidic acceptor solution by application of an electrical potential across the SLM. In both HF-LPME and EME, the sample (donor solution) was found to be rapidly depleted for analyte. In HF-LPME, the mass transfer across the SLM was slow, and this was found to be the rate limiting step of HF-LPME. This finding is in contrast to earlier discussions in the literature suggesting that mass transfer across the boundary layer at the donor–SLM interface is the rate limiting step of HF-LPME. In EME, mass transfer across the SLM was much more rapid due to electrokinetic migration. Nevertheless, mass transfer across the SLM was rate limiting even in EME. Theoretical models were developed to describe the kinetics in HF-LPME, in agreement with the experimental findings. In HF-LPME, the extraction efficiency was found to be maintained even if pH in the donor solution was lowered from 10 to 7–8, which was below the pKa-value for several of the analytes. Similarly, in EME, the extraction efficiency was found to be maintained even if pH in the donor solution increased from 4 to 11, which was above the pKa-value for several of the analytes. The two latter experiments suggested that both techniques may be used to effectively extract analytes from samples in a broader pH range as compared to the pH range recommended in the literature.  相似文献   

3.
An automated dynamic two-phase hollow fiber microextraction apparatus combined with high-performance liquid chromatography was developed for extraction and determination of chlorophenoxy acid (CPA) herbicides from environmental samples. The extraction device, called TT-extractor, consists of a polypropylene hollow fiber mounted inside a stainless steel tube by means of two tee-connectors in flow system. An organic solvent, which fills the lumen and the pores of the hydrophobic fiber, is pumped through the fiber repeatedly and the sample is pumped along the outer side of the fiber. The factors affecting the dynamic hollow fiber liquid-phase microextraction (DHF-LPME) of target analytes were investigated and the optimal extraction conditions were established. To test the applicability of the designed instrument, CPAs were extracted from environmental aqueous samples. The limits of detection (LODs) as low as 0.5 μg/L, linear dynamic range in the range of 1-100 μg/L and the relative standard deviations of <7% were obtained. The developed method can provide perconcentration factors as large as 230. A hollow fiber membrane can be used at least 20 times with neither loss in the efficiency nor carryover of the analytes between runs. The system is cheap and convenient and requires minimal manual handling.  相似文献   

4.
In this study, hollow fiber based liquid-phase microextraction (HF-LPME), coupled with GC, GC–MS and GC–IRMS detections, was employed to determine petroleum hydrocarbons in spilled oils. According to the results, the HF-LPME method collected more low-molecular weight components, such as C7–C11n-alkanes, naphthalene, and phenanthrene, than those collected in conventional liquid–liquid extraction (LLE). The results also showed that this method had no remarkable effect on the distributions of high-molecular weight compounds such as >C18n-alkanes, C1–C3 phenanthrene, and hopanes. Also, the carbon isotopic compositions of individual n-alkanes in the two preparation processes were identical. Accordingly, HF-LPME, as a simple, fast, and inexpensive sample preparation technique, could become a promising method for the identification of oil spill sources.  相似文献   

5.
Dynamic hollow fiber-supported headspace liquid-phase microextraction   总被引:3,自引:0,他引:3  
With the increasing concern over deteriorating environmental quality, the analysis of organic pollutants in air, water, and soil has become critically important. The development of simple, efficient, and inexpensive analytical sample pretreatment is crucial for monitoring and evaluating the environment. In this work, a dynamic hollow-fiber supported headspace liquid-phase microextraction (DHF-HS-LPME) approach was developed. In dynamic LPME, the extracting solvent is held within a hollow fiber, affixed to a syringe needle and immersed in the sample solution, and is moved to-and-fro by using a programmable syringe pump. The movement facilitates mass transfer from the sample to the solvent. Here, a similar approach was adopted, except that extraction was from the headspace rather than by direct immersion. Analysis of the extract was carried out by gas chromatography-mass spectrometry. The effect of sampling temperature, water, salt, dwelling time were investigated. Results indicated that this novel headspace microextraction method gave good analyte-enrichment factors, linear range, limits of detection and repeatability, all of which were evaluated by extracting PAHs from soil samples. This technique represents an inexpensive, convenient, fast and simple sample preparation of this class of semi-volatile organic compounds.  相似文献   

6.
朱颖  陈璇  郑飞浪  白小红 《色谱》2009,27(6):769-775
在优化的三相中空纤维液相微萃取(3p-HFLPME)条件下,研究了6种羟基苯甲酸类化合物(HBAs)的3p-HFLPME行为;揭示了HBAs的富集因子(EF)与其正庚醇/水条件分配系数(log Pn-heptanol/5 mmol/L HCl)、pKa和羟基数目(N)的相关性,初步阐明了聚偏氟乙烯中空纤维对HBAs的电荷转移传递机理以及有机溶剂对HBAs的选择性萃取机理。优化的3p-HFLPME条件: 以MOF 503聚偏氟乙烯中空纤维为有机溶剂支持体,正庚醇为有机相,5 mmol/L HCl体系为给体,80 mmol/L NH3·H2O为接受相,搅拌速度为1200 r/min,萃取35 min。该方法的精密度(以相对标准偏差计)小于3%,检出限为0.09~30.00 μg/L,加标回收率为93.3%~107.1%,HBAs质量浓度为5 mg/L时的富集因子最高达107.6倍。  相似文献   

7.

Preconcentration followed by ultraviolet spectrophotometric determination of amoxicillin (Amox) in pharmaceuticals and water samples by using a three-phase hollow fiber microextraction technique based on carrier-mediated transport has been presented. Amox was extracted from an aqueous solution (source phase) at pH 9.0 into 1-octanol containing 5% (w/v) Aliquat-336 impregnated in the pores of a hollow fiber. It was then back-extracted into NaCl solution (pH = 4.0) which was already positioned as the receiving phase inside the lumen of the hollow fiber. The extraction took place due to the concentration gradient of the counterion between the source and the receiving phases. Under the optimized conditions, an enrichment factor of 240 and a limit of detection of 0.2 μmol L−1 were obtained. The calibration curve was linear (R2 = 0.9967) in the concentration range of 0.5–10.0 µmol L−1 Amox. The interday relative standard deviation (n = 9) and the intraday relative standard deviation (n = 3) for 1.0 × 10−6 mol L−1 Amox solution were 7.3 and 6.4%, respectively.

  相似文献   

8.
Jing-Shan Chiang 《Talanta》2007,71(2):882-886
Dynamic hollow fiber liquid-phase microextraction (HF-LPME) coupled with gas chromatography with flame ionization detection (GC-FID) and GC-electron capture detecion (GC-ECD) was used for quantification of toxic haloethers in lake water. The analytes were extracted from 5 ml of aqueous sample using 4 μl of organic solvent through a porous polypropylene hollow fiber. The effects on extraction performance of solvent selection, agitation rate, extraction time, extraction temperature, concentration of salt added and volumes of solvent for extraction and injection were optimized. The proposed method provided a good average enrichment factor of up to 231-fold, reasonable reproducibility ranging from 9 to 12% (n = 3), and good linearity (R2 ≧ 0.9973) for spiked water samples. Method detection limits (MDLs) ranged from 0.55 to 4.30 μg/l for FID and 0.11-0.34 μg/l for ECD (n = 7).  相似文献   

9.
The application of dynamic hollow fiber liquid-phase microextraction (dynamic HF-LPME) and gas chromatography-mass spectrometry (GC-MS) for the determination of trace amounts of polychlorinated biphenyls (PCBs) in water was investigated. The experimental parameters were optimized. Under the optimum conditions, the concentration enrichment factors for PCBs were from 718-fold to 840-fold. The calibration curves were linear over a range of 0.05-90mug/L, with a correlation coefficient (r(2)) of 0.9957-0.9979. The relative standard deviation (RSD) ranged from 3.4% to 5.8% for intra-day variation and from 4.1% to 7.3% for inter-day variation. The limits of detection (LODs, S/N=3:1) were in the range of 13-41ng/L. The recoveries for spiked water samples ranged from 85.9% to 92.0%.  相似文献   

10.
采用中空纤维液相微萃取与高效液相色谱联用技术测定了尿液样品中的痕量己烯雌酚;考察了样品相酸度、中间相种类、接收相浓度、搅拌速度、萃取时间等对液-液-液三相微萃取效率的影响,进而确定了最佳萃取条件.结果表明,当样品相pH为2.5,中间相为甲苯,接收相为3μL 0.25mol/L氢氧化钠溶液,搅拌速度为800r/min,萃取时间为50min时,萃取效率最佳.在最佳萃取条件下,样品的回收率为76.4%,相对标准偏差为3.8%.  相似文献   

11.
Formaldehyde is known as a highly toxic compound to humans and identified as a carcinogenic substance. In this study, Hantzsch reaction was utilized for the derivatization of trace amounts of formaldehyde in aqueous samples with acetylacetone in the presence of ammonia to form an extractable colored product named 3,5-diacetyl 1,4-dihydrolutidine (DDL) and its further extraction using two-phase hollow fiber liquid-phase microextraction. The main experimental variables affecting the extraction performance were investigated and optimized. Under the optimum conditions (sample volume 12 mL; reaction temperature 70 °C; ammonium acetate buffer solution 4 mL 0.1 mol L?1; acetylacetone 5 mL 0.15 mol L?1; solvent octanol, salt concentration 20% (w/v) NaCl; pH of donor phase 7.0; stirring speed 400 rpm and extraction time 30 min), the linear dynamic range, limit of detection (LOD as 3S b/m) and relative standard deviation (RSD %) of the proposed method were obtained as 5–250 μg L?1 (r 2 = 0.9979), 3.6 μg L?1 and 2.5%, respectively. Finally, the applicability of the proposed method was examined, and very good results were obtained. The results confirmed the applicability of the proposed method as a versatile, low-cost and sensitive preconcentration method for determination of low concentrations of formaldehyde in aqueous solutions.  相似文献   

12.
Knowing that microbial transformations of compounds play vital roles in the preparation of new derivatives with biological activities, risperidone and its chiral metabolites were determined by capillary electrophoresis and hollow fiber liquid-phase microextraction after a fungal biotransformation study in liquid culture medium. The analytes were extracted from 1 mL liquid culture medium into 1-octanol impregnated in the pores of the hollow fiber, and into an acid acceptor solution inside the polypropylene hollow fiber. The electrophoretic separations were carried out in 100 mmol/L sodium phosphate buffer pH 3.0 containing 2.0% w/v sulfated-α-CD and carboxymethyl-β-CD 0.5% w/v with a constant voltage of -10 kV. The method was linear over the concentration range of 100-5000 ng/mL for risperidone and 50-5000 ng/mL for each metabolite enantiomer. Within-day and between-day assay precisions and accuracies for all the analytes were studied at three concentration levels, and the values of relative standard deviation and relative error were lower than 15%. The developed method was applied in a pilot biotransformation study employing risperidone as the substrate and the filamentous fungus Mucor rouxii. This study showed that the filamentous fungus was able to metabolize risperidone enantioselectively into its chiral active metabolite, (-)-9-hydroxyrisperidone.  相似文献   

13.
A simple and efficient hollow fiber liquid‐phase microextraction (HF‐LPME) technique in conjunction with high‐performance liquid chromatography is presented for extraction and quantitative determination of aristolochic acid I in human urine samples. Several parameters influencing the efficiency of HF‐LPME were investigated and optimized, including extraction solvent, stirring rate, extraction time, pH of donor phase and acceptor phase. Excellent sample clean‐up was observed and good linearity with coefficient of 0.9999 was obtained in the range of 15.4–960 µg/L. This method provided a 230‐fold enrichment factor and good repeatability with relative standard deviations (RSD) lower than 6.0%. The limit of detection value for the analyte in urine sample was 0.01 µg/L at a signal‐to‐noise ratio of 3. The extraction recovery from urine samples was 61.8% with an RSD of 9.71%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, three-phase liquid-phase microextraction (LPME) based on a supported liquid membrane (SLM) sustained in the wall of a hollow fiber was investigated with special focus on optimization of the experimental procedures in terms of recovery and repeatability. Recovery data for doxepin, amitriptyline, clomipramine, and mianserin were in the range of 67.8-79.8%. Within-day repeatability data for the four basic drugs were in the range of 4.1-7.7%. No single factor was found to be responsible for these variations, and the variability was caused by several factors related to the LPME extractions as well as to the final HPLC determination. Although the volume of the SLM varied within 0.4-3.1% RSD depending on the preparation procedure, and the volume of the acceptor solution varied within 4.8% RSD, both recoveries and repeatability were found to be relative insensitive to these variations. Thus, the handling of microliters of liquid in LPME was not a very critical factor, and the preparation of the SLM was accomplished in several different ways with comparable performance. Reuse of hollow fibers was found to suffer from matrix effects due to built-up of analytes in the SLM, whereas washing of the hollow fibers in acetone was beneficial in terms of recovery, especially for the extraction of the most hydrophobic substances. Several of the organic solvents used in the literature as SLM suffered from poor long-term stability, but silicone oil AR 20 (polyphenylmethylsiloxane), 2-nitrophenyl octyl ether (NPOE), and dodecyl acetate (DDA) all extracted with unaltered performance even after 60 days of storage at room temperature.  相似文献   

15.
Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article.  相似文献   

16.
陈璇  白小红  王晓  王婧  卜玮 《色谱》2010,28(12):1144-1149
利用中空纤维液相微萃取方法(HF-LPME)分析麻黄碱和伪麻黄碱在不同基质中的优势构象,阐明了麻黄碱和伪麻黄碱的萃取机理;结合高效液相色谱(HPLC)建立了微量麻黄碱和伪麻黄碱的分离测定方法。以聚偏氟乙烯中空纤维为有机溶剂载体,正己醇为萃取溶剂,麻黄碱和伪麻黄碱的NaOH(5 mol/L)溶液为样品相,0.01 mol/L H2SO4溶液为接收相,在1200 r/min转速下萃取35 min,收集萃取液直接进行HPLC分析。麻黄碱和伪麻黄碱在水溶液中的线性范围为5~100 μg/L,检出限分别为1.9 μg/L和1.2 μg/L,富集倍数分别为38和61倍,平均回收率分别为100.6%±1.2%和103.2%±3.5%;在鼠尿液中的线性范围为100~5×104 μg/L,检出限分别为30 μg/L和42 μg/L,富集倍数分别为20和17倍,平均回收率分别为108.4%±4.4%和106.1%±5.4%。研究表明该方法操作简单,选择性高,适用于微量麻黄碱的含量测定和分析。  相似文献   

17.
A simple and rapid liquid-phase microextraction (LPME) method using a hollow fiber membrane (HFM) in conjunction with gas chromatography-mass spectrometry (GC-MS) is presented for the quantitative determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 organochlorine pesticides (OCPs) in rainwater samples. The LPME conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of hollow fiber exposure time, stirring rate, sample pH, and composition. Enrichment factors of more than 100 could be achieved within 35 min of extraction with relative standard deviations (R.S.D.s) 1.3-13.6% for PAHs and 1.7-13.8% for OCPs, respectively, over a wide range of analyte concentrations. Detection limits ranged from 0.002 to 0.047 microg l(-1) for PAHs, and from 0.013 to 0.059 microg l(-1) for OCPs, respectively. The newly developed LPME-GC-MS method has been validated for the analysis of PAHs and OCPs in rainwater samples. Extraction recoveries from spiked synthetic rainwater samples varied from 73 to 115% for PAHs and from 75 to 113% for OCPs, respectively. Real rainwater samples were analyzed using the optimized method. The concentrations of PAHs and OCPs in real rainwater samples were between 0.005-0.162, and 0.063 microg l(-1), respectively.  相似文献   

18.
A simple and efficient method based on hollow fiber protected headspace liquid-phase in conjunction with high performance liquid chromatography has been introduced for extraction and determination of three residual monomers (2-ethylhexyl acrylate (EHA), vinyl acetate (VA), glycidyl methacrylate (GM)) in polymer latex. Using this methodology, the analytes of interest extracted from a sample are led into organic solvent located inside the porous hollow fiber membrane. Initially, several experimental parameters were controlled and optimized and the optimum conditions were reached with 8 cm neatly cut hollow fibers containing heptanol, which were exposed to the headspace of a 12 mL sample solution containing 20% (w/v) NaCl thermostated at 110 °C and stirred at 800 rpm for 20 min. Finally, 20 μL of the extraction solution was withdrawn into a syringe and injected into HPLC for analysis. The calibration curves were linear (r2 ≥ 0.994) over the concentration range of 0.05-10 mg L−1 for VA and 0.02-10 mg L−1 for other analytes. The relative standard deviation (RSD%) for three-replicate extractions and measurements was below 8.6%. The limits of detection of this method for quantitative determination of the analytes were found within the range of 0.005 to 0.011 mg kg−1 with the enrichment factors within the 5-164 range. The method was successfully applied for determination of residual monomers in polymer latex.  相似文献   

19.
A new fluorescent probe for the detection of F (TBA+ and Na+ salts) has been developed, which is based on a desilylation triggered chromogenic reaction in water. This probe exhibits excellent F ion selectivity as well as significant color changes visible to the naked eye at the concentration of 1.5 mg L−1, the WHO recommended level of F ions in drinking water. This new carbohydrate modified probe can be used directly in aqueous medium without using organic co-solvents. Furthermore, the probe presents high sensitivity and selectivity for the imaging of F ions in HepG2 cells.  相似文献   

20.
In the present study, a three phase-based hollow fiber protected liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) for the determination of salicylates in environmental waters was developed. The HF-LPME procedure was optimized by an L16(45) orthogonal array experimental design (OAD) with five factors at four levels. Under the optimal extraction condition (pHs of donor and receiving phases of 3.0 and 6.2, respectively, extraction time of 45 min, stirring speed of 1000 rpm, and salt addition of 20% (w/v)), salicylates could be determined in a linear range from 0.025 to 1.0 μg mL−1 with a good correlation (r2 > 0.9930). The limits of detection (LODs) ranged between 0.6 ng mL−1 and 1.2 ng mL−1 for the target analytes. The relative standard deviations (RSDs) of intra-day and inter-day were in the range of 0.64–14.58% and 0.16–15.45%, respectively. This procedure afforded a convenient, sensitive, accurate and cost-saving operation with high extraction efficiency for the model analytes. The method was applied satisfactorily to the determination of salicylates in two environmental waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号