首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider two-stage pure integer programs with discretely distributed stochastic right-hand sides. We present an equivalent superadditive dual formulation that uses the value functions in both stages. We give two algorithms for finding the value functions. To solve the reformulation after obtaining the value functions, we develop a global branch-and-bound approach and a level-set approach to find an optimal tender. We show that our method can solve randomly generated instances whose extensive forms are several orders of magnitude larger than the extensive forms of those instances found in the literature. This work is supported by National Science Foundation grants DMI-0217190 and DMI-0355433.  相似文献   

2.
We introduce the bilevel knapsack problem with stochastic right-hand sides, and provide necessary and sufficient conditions for the existence of an optimal solution. When the leader’s decisions can take only integer values, we present an equivalent two-stage stochastic programming reformulation with binary recourse. We develop a branch-and-cut algorithm for solving this reformulation, and a branch-and-backtrack algorithm for solving the scenario subproblems. Computational experiments indicate that our approach can solve large instances in a reasonable amount of time.  相似文献   

3.
This paper discusses the use of different pricing and ordering schemes when solving many linear programs that differ only in the right-hand sides. This is done in a setting of what has become known as bunching or trickling down. The idea is to collect (bunch) all right-hand sides that have the same optimal basis, and to organize the search for these bases efficiently. We demonstrate that the choice of pricing rule is indeed very important, but we were not able to make conclusions regarding ordering schemes. Numerical results are given.  相似文献   

4.
5.
6.
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory’s fractional cutting plane algorithm or a branch-and-bound algorithm is applied.  相似文献   

7.
We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010) a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User??s manual, 2010) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.  相似文献   

8.
Two-stage stochastic linear programming is a classical model in operations research. The usual approach to this model requires detailed information on distribution of the random variables involved. In this paper, we only assume the availability of the first and second moments information of the random variables. By using duality of semi-infinite programming and adopting a linear decision rule, we show that a deterministic equivalence of the two-stage problem can be reformulated as a second-order cone optimization problem. Preliminary numerical experiments are presented to demonstrate the computational advantage of this approach.  相似文献   

9.
We suggest methods for studying fractional differential equations with Caputo and Riemann-Liouville derivatives. Existence and uniqueness theorems are proved for the Cauchy problem for differential equations with worsening operators in scales of Banach spaces.  相似文献   

10.
In this paper, we propose a successive approximation heuristic which solves large stochastic mixed-integer programming problem with complete fixed recourse. We refer to this method as the Scenario Updating Method, since it solves the problem by considering only a subset of scenarios which is updated at each iteration. Only those scenarios which imply a significant change in the objective function are added. The algorithm is terminated when no such scenarios are available to enter in the current scenario subtree. Several rules to select scenarios are discussed. Bounds on heuristic solutions are computed by relaxing some of the non-anticipativity constraints. The proposed procedure is tested on a multistage stochastic batch-sizing problem.  相似文献   

11.
We consider quadratic programs with pure general integer variables. The objective function is quadratic and convex and the constraints are linear. An exact solution approach is proposed. It is decomposed into two phases. In the first phase, the initial problem is reformulated into an equivalent problem with a separable objective function. This is done by use of a Gauss decomposition of the Hessian matrix of the initial problem and requires the addition of some continuous variables and constraints. In the second phase, the reformulated problem is linearized by an approximation of each squared term by a set of K linear functions that correspond to the tangents of a hyperbola in K points. We give a proof of the intuitive property that when K is large enough, the optimal value of the obtained linear program is very close to optimal value of the two previous problems, the initial problem and the reformulated separable problem. The reminder is dedicated to the implementation of a branch-and-bound algorithm for the solution of linearized problem, and its application to a set of instances. Several points are considered among which choice of the right value for parameter K and the implementation of a sophisticated heuristic solution algorithm. The numerical comparison is done with CPLEX 12.2 since, in this case, the initial problem as well as the problem reformulated by the first step can be solved by CPLEX. We show that with our approach, the total CPU time is divided by a factor ranging from 1.2 to 131.6 for instances with 40–60 variables.  相似文献   

12.
We are given finitely many polyhedra defined by linear constraints, using the same constraint matrix and different right-hand sides. We consider a simple constraint system and give necessary and sufficient conditions for this system to define the union of the polyhedra. We also show that deciding whether the system does define the union is NP-hard.Dedicated to the memory of Robert Jeroslow  相似文献   

13.
We prove theorems which establish estimates for the domain of stability of a differential system with rational right-hand side. We also construct estimates of the convergence of solutions of the system.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 47, No. 9, pp. 1295–1299, September, 1995.  相似文献   

14.
In this paper, two-stage stochastic quadratic programming problems with equality constraints are considered. By Monte Carlo simulation-based approximations of the objective function and its first (second)derivative,an inexact Lagrange-Newton type method is proposed.It is showed that this method is globally convergent with probability one. In particular, the convergence is local superlinear under an integral approximation error bound condition.Moreover, this method can be easily extended to solve stochastic quadratic programming problems with inequality constraints.  相似文献   

15.
We consider a class of two-stage stochastic integer programs with binary variables in the first stage and general integer variables in the second stage. We develop decomposition algorithms akin to the $L$ -shaped or Benders’ methods by utilizing Gomory cuts to obtain iteratively tighter approximations of the second-stage integer programs. We show that the proposed methodology is flexible in that it allows several modes of implementation, all of which lead to finitely convergent algorithms. We illustrate our algorithms using examples from the literature. We report computational results using the stochastic server location problem instances which suggest that our decomposition-based approach scales better with increases in the number of scenarios than a state-of-the art solver which was used to solve the deterministic equivalent formulation.  相似文献   

16.
Convex integer quadratic programming involves minimization of a convex quadratic objective function with affine constraints and is a well-known NP-hard problem with a wide range of applications. We proposed a new variable reduction technique for convex integer quadratic programs (IQP). Based on the optimal values to the continuous relaxation of IQP and a feasible solution to IQP, the proposed technique can be applied to fix some decision variables of an IQP simultaneously at zero without sacrificing optimality. Using this technique, computational effort needed to solve IQP can be greatly reduced. Since a general convex bounded IQP (BIQP) can be transformed to a convex IQP, the proposed technique is also applicable for the convex BIQP. We report a computational study to demonstrate the efficacy of the proposed technique in solving quadratic knapsack problems.  相似文献   

17.
This paper addresses a general class of two-stage stochastic programs with integer recourse and discrete distributions. We exploit the structure of the value function of the second-stage integer problem to develop a novel global optimization algorithm. The proposed scheme departs from those in the current literature in that it avoids explicit enumeration of the search space while guaranteeing finite termination. Computational experiments on standard test problems indicate superior performance of the proposed algorithm in comparison to those in the existing literature.The authors wish to acknowledge partial financial support from the IBM Research Division, ExxonMobil Upstream Research Company, and the National Science Foundation under awards DMI 95-02722, DMI 00-99726, and DMI 01-15166  相似文献   

18.
For our introduced mixed-integer quadratic stochastic program with fixed recourse matrices, random recourse costs, technology matrix and right-hand sides, we study quantitative stability properties of its optimal value function and optimal solution set when the underlying probability distribution is perturbed with respect to an appropriate probability metric. To this end, we first establish various Lipschitz continuity results about the value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of linear constraints. The obtained results extend earlier results about quantitative stability properties of stochastic integer programming and stability results for mixed-integer parametric quadratic programs.  相似文献   

19.
In this paper, we consider the solvability of the Cauchy problem for pseudohyperbolic equations (partial differential equations of third order). For the case in which the right-hand side is a generalized function (distribution) of finite order, we establish a theorem on the unique solvability for a sufficiently general pseudohyperbolic operator. The method of proof is based on a specially constructed “scale” of a priori inequalities for the direct and adjoint operators.  相似文献   

20.
《Optimization》2012,61(9):1983-1997
For mixed-integer quadratic program where all coefficients in the objective function and the right-hand sides of constraints vary simultaneously, we show locally Lipschitz continuity of its optimal value function, and derive the corresponding global estimation; furthermore, we also obtain quantitative estimation about the change of its optimal solutions. Applying these results to two-stage quadratic stochastic program with mixed-integer recourse, we establish quantitative stability of the optimal value function and the optimal solution set with respect to the Fortet-Mourier probability metric, when the underlying probability distribution is perturbed. The obtained results generalize available results on continuity properties of mixed-integer quadratic programs and extend current results on quantitative stability of two-stage quadratic stochastic programs with mixed-integer recourse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号