首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid pathogen detection is an emerging issue in clinical, environmental, and food industry sectors. Biosensors can represent a solution to culture-based and molecular methods as they respond to sensitivity, specificity, and rapidity needs. Screen-printed electrodes have been used in association with nanoparticles to increase the signal and improve sensitivity reaching low numbers of the targets. Antibodies, DNA probes, and aptamers are mainly used to functionalize the working electrodes to ensure high specific pathogen detection by the use of voltammetry, impedance spectroscopy, amperometry, and conductivity. Electrochemical biosensors can be miniaturized to construct portable devices useful for in situ assays.  相似文献   

2.
The detection and identification of foodborne pathogens continue to rely on conventional culturing techniques. These are very elaborate, time-consuming, and have to be completed in a microbiology laboratory and are therefore not suitable for on-site monitoring. The need for a more rapid, reliable, specific, and sensitive method of detecting a target analyte, at low cost, is the focus of a great deal of research. Biosensor technology has the potential to speed up the detection, increase specificity and sensitivity, enable high-throughput analysis, and to be used for monitoring of critical control points in food production. This article reviews food pathogen detection methods based on electrochemical biosensors, specifically amperometric, potentiometric, and impedimetric biosensors. The underlying principles and application of these biosensors are discussed with special emphasis on new biorecognition elements, nanomaterials, and lab on a chip technology.  相似文献   

3.
刘瑾  向淼  李依依  唐丽娜  李玉桃 《化学通报》2023,86(9):1084-1090
半胱氨酸(Cys)作为人体重要的非必需氨基酸之一,对蛋白质合成、渗透调节、解毒过程、神经系统功能和抗氧化过程均发挥着重要作用,近年来广泛应用于医学临床、食品加工和生化研究领域。因此,发展快速、准确检测半胱氨酸浓度的方法具有重要意义。本文简要介绍了半胱氨酸的基本知识以及半胱氨酸的传统检测方法,对半胱氨酸定量检测的电化学传感器的研制与应用进行了重点阐述,并对其发展前景进行了展望。  相似文献   

4.
褪黑素是人体松果体分泌的一种重要的神经递质,近年来其在控制昼夜节律和提供免疫抗炎特性等生理调节作用方面备受关注。因此,发展可靠、快速检测体内和体外样本中褪黑素浓度的方法,对于探索褪黑素的临床应用和生物学特性具有重要的意义。本文对褪黑素及其传统检测方法进行简要介绍,重点阐述了近几年报道的用于生物样本和药物样本中褪黑素定量检测的电化学传感器,并对褪黑素传感器的未来发展方向进行展望。  相似文献   

5.
6.
Screening serum for the presence of prostate specific antigen (PSA) belongs to the most common approach for the detection of prostate cancer. This review (with 156 refs.) addresses recent developments in PSA detection based on the use of various kinds of nanomaterials. It starts with an introduction into the field, the significance of testing for PSA, and on current limitations. A first main section treats electrochemical biosensors for PSA, with subsections on methods based on the use of gold electrodes, graphene or graphene-oxide, carbon nanotubes, hybrid nanoparticles, and other types of nanoparticles. It also covers electrochemical methods based on the enzyme-like activity of PSA, on DNA-, aptamer- and biofuel cell-based methods, and on the detection of PSA via its glycan part. The next main section covers optical biosensors, with subsections on methods making use of surface plasmon resonance (SPR), localized SPR and plasmonic ELISA-like schemes. This is followed by subsections on methods based on the use of fiber optics, fluorescence, chemiluminescence, Raman scattering and SERS, electrochemiluminescence and cantilever-based methods. The most sensitive biosensors are the electrochemical ones, with lowest limits of detection (down to attomolar concentrations), followed by mass cantilever sensing and electrochemilumenescent strategies. Optical biosensors show lower performance, but are still more sensitive compared to standard ELISA. The most commonly applied nanomaterials are metal and carbon-based ones and their hybrid composites used for different amplification strategies. The most attractive sensing schemes are summarized in a Table. The review ends with a section on conclusions and perspectives.
Graphical abstract Schematic representation of nanostructure-based biosensors for detection of prostate specific antigen using various detection schemes and biorecognition elements such as antibodies (Abs), aptamers (APT), lectins (LEC), and molecularly imprinted polymers (MIP).
  相似文献   

7.
DNA biosensors (or genosensors) are analytical devices that result from the integration of a sequence-specific probe and a signal transducer. Among other techniques, electrochemical and piezoelectric methods have recently emerged as the most attractive due to their simplicity, low instrumentation costs, possibility for real-time and label-free detection and generally high sensitivity.Focusing on the most recent activity of worldwide researchers, the aim of the present review is to give the readers a critical overview of some important aspects that contribute in creating successful genosensing devices. Advantages and disadvantages of different sensing materials, probe immobilisation chemistries, hybridisation conditions, transducing principles and amplification strategies will be discussed in detail. Dedicated sections will also address the issues of probe design and real samples pre-treatment. Special emphasis will be finally given to those protocols that, being implemented into an array format, are already penetrating the molecular diagnostics market.  相似文献   

8.
9.
Xenon-129 biosensors offer an attractive alternative to conventional MRI contrast agents due to the chemical shift sensitivity and large nuclear magnetic signal of hyperpolarized (129)Xe. Here, we report the first enzyme-responsive (129)Xe NMR biosensor. This compound was synthesized in 13 steps by attaching the consensus peptide substrate for matrix metalloproteinase-7 (MMP-7), an enzyme that is upregulated in many cancers, to the xenon-binding organic cage, cryptophane-A. The final coupling step was achieved on solid support in 80-92% yield via a copper (I)-catalyzed [3+2] cycloaddition. In vitro enzymatic cleavage assays were monitored by HPLC and fluorescence spectroscopy. The biosensor was determined to be an excellent substrate for MMP-7 (K(M) = 43 microM, V(max) = 1.3 x 10(-)(8) M s(-1), k(cat)/K(M) = 7,200 M(-1) s(-1)). Enzymatic cleavage of the tryptophan-containing peptide led to a dramatic decrease in Trp fluorescence, lambda(max) = 358 nm. Stern-Volmer analysis gave an association constant of 9000 +/- 1,000 M(-1) at 298 K between the cage and Trp-containing hexapeptide under enzymatic assay conditions. Most promisingly, (129)Xe NMR spectroscopy distinguished between the intact and cleaved biosensors with a 0.5 ppm difference in chemical shift. This difference most likely reflected a change in the electrostatic environment of (129)Xe, caused by the cleavage of three positively charged residues from the C-terminus. This work provides guidelines for the design and application of new enzyme-responsive (129)Xe NMR biosensors.  相似文献   

10.
人体血清中甲胎蛋白(AFP)含量已作为肝癌检测的重要指标,快速而准确地检测血清中的AFP含量对肝癌的早期诊断和预后都有极为重要的作用。传统的酶联免疫法存在分析时间长、前处理繁琐等不利因素。利用免疫技术与电化学检测技术结合起来的电化学免疫传感器,由于具有操作简单、灵敏度高、特异性强及成本低等特点,而得到广泛关注。本文将根据所采用的不同检测方式及修饰材料等方面对近年来电化学免疫传感器检测AFP的研究与应用进行评述,并对其发展趋势进行了展望。  相似文献   

11.
Cellular impedance biosensors for drug screening and toxin detection   总被引:1,自引:0,他引:1  
Asphahani F  Zhang M 《The Analyst》2007,132(9):835-841
Cell-based impedance biosensing is an emerging technology that can be used to non-invasively and instantaneously detect and analyze cell responses to chemical and biological agents. This article highlights the fabrication and measurement technologies of cell impedance sensors, and their application in toxin detection and anti-cancer drug screening. We start with an introduction that describes the capability and advantages of cell-based sensors over conventional sensing technology, followed by a discussion of the influence of cell adhesion, spreading and viability during cell patterning on the subsequent impedance measurements and sensing applications. We then present an electronic circuit that models the cell-electrode system, by which the cellular changes can be detected in terms of impedance changes of the circuit. Finally, we discuss the current status on using cell impedance sensors for toxin detection and anti-cancer drug screening.  相似文献   

12.
Aptamer-based biosensors for the detection of HIV-1 Tat protein   总被引:7,自引:0,他引:7  
Two biosensors have been constructed using an RNA aptamer as biorecognition element. The aptamer, specific for HIV-1 Tat protein, has been immobilised on the gold surface of piezoelectric quartz crystals or surface plasmon resonance (SPR) chips to develop a quartz crystal microbalance (QCM)-based and an SPR-based biosensor, respectively. Both the biosensors were modified with the same immobilisation chemistry based on the binding of a biotinylated aptamer on a layer of streptavidin. The binding between the immobilised aptamer and its specific protein has been evaluated with the two biosensors in terms of sensitivity, reproducibility and selectivity. A protein very similar to Tat, Rev protein, has been used as negative control. The two biosensors both were very reproducible in the immobilisation and the binding steps. The selectivity was high in both cases.  相似文献   

13.
Smith RG  D'Souza N  Nicklin S 《The Analyst》2008,133(5):571-584
This article provides a review of the published literature describing the use of biosensors and biologically-inspired systems for explosives detection. The review focusses on the use of antibodies, enzymes, biologically-inspired synthetic ligands and whole-cell biosensors, providing a flavour of the range of technology, formats and approaches that can be used to detect explosives using biological systems.  相似文献   

14.
15.
Organophosphorus (OP) pesticides can be rapidly detected by integrating organophosphorus hydrolase with an optical leaky waveguide biosensor. This enzyme catalyses the hydrolysis of a wide range of organophosphorus compounds causing an increase in the pH. Thus, the direct detection of OP is possible by monitoring of the pH changes associated with the enzyme's activity. This article describes the use of an optical, leaky waveguide clad with absorbing materials for the detection of OP pesticides by measuring changes in refractive index, absorbance and fluorescence. In the most effective configuration, a thick sensing layer was used to increase the amount of immobilized enzyme and to increase the light interaction with the sensing layer, resulting in a greatly enhanced sensitivity. The platforms developed in this work were successfully used to detect paraoxon and parathion down to 4 nM concentrations.  相似文献   

16.
Rapid on-site detection of pathogenic bacteria with high sensitivity and specificity is becoming an urgent need in public health assurance, medical diagnostics, environmental monitoring, and food safety fields. Despite being reliable and widely used, the existing methods of bacteria detection are cumbersome and time-consuming, which is not conducive to field detection. Microfluidic lab-on-a-chip technology has provided a detective tool for various analytes, due to its miniaturization, portabilit...  相似文献   

17.
Cell-based biosensors, bioelectronic portable devices containing plant living cells have been used for monitoring some physiological changes induced by pathogen-derived signal molecules called flagellin. The screen-printed electrodes have been adapted for preparation of biosensors. The proton-sensitive thick films have been printed using composite bulk modified with edition of RuO(2). Obtained disposable electrodes were made possible to measure the pH change with well sensitivity and reproducibility. Tobacco cells attached to the electrode surface, cell-based biosensor, can be used for the detection of flagellin, the virulence factor of bacterial pathogen. We culture tobacco cells on the surface of such electrotransducer for several weeks and monitor of potential of cells under flagellin stimulation. The detection of the electrochemical proton gradient across the plasma membrane serves as the analytical signal. The electrode response depended upon H(+) concentration in extracellular solution. It can be conveniently observed on the surfaces of biosensors. Suitable stability and the good response time of constructed biosensors were observed. Future development of these cell-based biosensors could draw advances in selective monitoring of microbial pathogens and other physiologically active components. Moreover, this new method is much faster compared with the traditional microbial testing.  相似文献   

18.
Early and precise diagnosis are propitious to timely treatment and simultaneously increase the chance of successful treatments. It is of critical importance to develop rapid, sensitive, and reliable sensing techniques of physiological biomarkers for disease diagnosis. Due to the advantages of structural designability and property tunability, nanoscale metal-organic frameworks(nMOFs) have been widely applied in the field of biomedicine in recent years. Particularly, enhanced stability, more modif...  相似文献   

19.
20.
Recent successful syntheses of monodispersed magnetic nanoparticles have offered a unique opportunity to control and probe biological interactions using magnetic force. This paper highlights a general strategy to generate biofunctional magnetic nanoparticles, illustrates applications for these nanoparticles in protein separation and pathogen detection, and analyzes the high sensitivity and high selectivity achieved by this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号