首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP-hard by expressing the satisfiability of boolean formulas in 3-conjunctive normal form as such an intersection. The corresponding approximation problems are shown NP-hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown W[P]-hard. The results are in contrast with the maximum matroid-matroid intersection which is solvable in polynomial time by an old result of Edmonds. We also prove that it is NP-hard to approximate the weighted greedoid maximization within 2nO(1) where n is the size of the domain of the greedoid.  相似文献   

3.
4.
The ellipsoid method and its consequences in combinatorial optimization   总被引:1,自引:0,他引:1  
L. G. Khachiyan recently published a polynomial algorithm to check feasibility of a system of linear inequalities. The method is an adaptation of an algorithm proposed by Shor for non-linear optimization problems. In this paper we show that the method also yields interesting results in combinatorial optimization. Thus it yields polynomial algorithms for vertex packing in perfect graphs; for the matching and matroid intersection problems; for optimum covering of directed cuts of a digraph; for the minimum value of a submodular set function; and for other important combinatorial problems. On the negative side, it yields a proof that weighted fractional chromatic number is NP-hard. Research by the third author was supported by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).  相似文献   

5.
Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely laminar crossing spanning tree), and (2) by incorporating ‘degree bounds’ in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems. Our main result is a (1, b + O(log n))-approximation algorithm for the minimum crossing spanning tree (MCST) problem with laminar degree constraints. The laminar MCST problem is a natural generalization of the well-studied bounded-degree MST, and is a special case of general crossing spanning tree. We give an additive Ω(log c m) hardness of approximation for general MCST, even in the absence of costs (c > 0 is a fixed constant, and m is the number of degree constraints). This also leads to a multiplicative Ω(log c m) hardness of approximation for the robust k-median problem (Anthony et al. in Math Oper Res 35:79–101, 2010), improving over the previously known factor 2 hardness. We then consider the crossing contra-polymatroid intersection problem and obtain a (2, 2b + Δ ? 1)-approximation algorithm, where Δ is the maximum element frequency. This models for example the degree-bounded spanning-set intersection in two matroids. Finally, we introduce the crossing latticep olyhedron problem, and obtain a (1, b + 2Δ ? 1) approximation algorithm under certain condition. This result provides a unified framework and common generalization of various problems studied previously, such as degree bounded matroids.  相似文献   

6.
We present a new algorithm for the problem of determining the intersection of a half-line with the independent set polytope of a matroid. We show it can also be used to compute the strength of a graph and the corresponding partition using successive contractions. The algorithm is based on the maximization of successive linear forms on the boundary of the polytope. We prove it is a polynomial algorithm in probability with average number of iterations in O(n5). Finally, numerical tests reveal that it should only require O(n2) iterations in practice.  相似文献   

7.
Faigle  Ulrich  Kern  Walter 《Order》2000,17(4):353-375
An algebraic model generalizing submodular polytopes is presented, where modular functions on partially ordered sets take over the role of vectors in R n . This model unifies various generalizations of combinatorial models in which the greedy algorithm and the Monge algorithm are successful and generalizations of the notions of core and Weber set in cooperative game theory.As a further application, we show that an earlier model of ours as well as the algorithmic model of Queyranne, Spieksma and Tardella for the Monge algorithm can be treated within the framework of usual matroid theory (on unordered ground-sets), which permits also the efficient algorithmic solution of the intersection problem within this model.  相似文献   

8.
In this paper, we approach the quality of a greedy algorithm for the maximum weighted clique problem from the viewpoint of matroid theory. More precisely, we consider the clique complex of a graph (the collection of all cliques of the graph) which is also called a flag complex, and investigate the minimum number k such that the clique complex of a given graph can be represented as the intersection of k matroids. This number k can be regarded as a measure of “how complex a graph is with respect to the maximum weighted clique problem” since a greedy algorithm is a k-approximation algorithm for this problem. For any k>0, we characterize graphs whose clique complexes can be represented as the intersection of k matroids. As a consequence, we can see that the class of clique complexes is the same as the class of the intersections of partition matroids. Moreover, we determine how many matroids are necessary and sufficient for the representation of all graphs with n vertices. This number turns out to be n-1. Other related investigations are also given.  相似文献   

9.
The weighted matroid parity problems for the matching matroid and gammoids are among the very few cases for which the weighted matroid parity problem is polynomial time solvable. In this work we extend these problems to a general revenue function for each pair, and show that the resulting problem is still solvable in polynomial time via a standard weighted matching algorithm. We show that in many other directions, extending our results further is impossible (unless P = NP). One consequence of the new polynomial time algorithm is that it demonstrates, for the first time, that a prize-collecting assignment problem with “pair restriction” is solved in polynomial time. The prize collecting assignment problem is a relaxation of the prize-collecting traveling salesman problem which requires, for any prescribed pair of nodes, either both nodes of the pair are matched or none of them are. It is shown that the prize collecting assignment problem is equivalent to the prize collecting cycle cover problem which is hence solvable in polynomial time as well.  相似文献   

10.
Cunningham and Geelen introduced the independent path-matching problem as a common generalization of the weighted matching problem and the weighted matroid intersection problem. Associated with an independent path-matching is an independent path-matching vector. The independent path-matching polytope of an instance of the independent path-matching problem is the convex hull of all the independent path-matching vectors. Cunningham and Geelen described a system of linear inequalities defining the independent path-matching polytope. In this paper, we characterize which inequalities in this system induce facets of the independent path-matching polytope, generalizing previous results on the matching polytope and the common independent set polytope.  相似文献   

11.
Linear matroid parity generalizes matroid intersection and graph matching (and hence network flow, degree-constrained subgraphs, etc.). A polynomial algorithm was given by Lovász. This paper presents an algorithm that uses timeO(mn 3), wherem is the number of elements andn is the rank. (The time isO(mn 2.5) using fast matrix multiplication; both bounds assume the uniform cost model). For graphic matroids the time isO(mn 2). The algorithm is based on the method of augmenting paths used in the algorithms for all subcases of the problem. First author was supported in part by the National Science Foundation under grants MCS 78-18909, MCS-8302648, and DCR-8511991. The research was done while the second author was at the University of Denver and at the University of Colorado at Boulder.  相似文献   

12.
It is known that a large class of “hard” combinatorial optimization problems can be put in the form of a k-parity (weighted) matroid problem. In this paper we describe a heuristically guided algorithm for solving the above class of problems, which utilizes the information obtainable from the problem domain by computing, at each step, a possibly tight lower bound to the solution.  相似文献   

13.
Optimization problems on matroids are generalizations of such important combinatorial optimization problems like the problem of minimum spanning tree of a graph, the bipartite matching problem, flow problems, etc. We analyze algorithms for finding the maximum weight independent set of a matroid and for finding a maximum cardinality intersection of two matroids and extend them to obtain the so-called “persistency” partition of the basic set of the matroid, where contain elements belonging to all optimum solutions; contain elements not belonging to any optimum solution; contain elements that belong to some but not to all optimum solutions.  相似文献   

14.
We prove the following characterization theorem: If any three of the following four matroid invariants—the number of points, the number of lines, the coefficient of λn  2 in the characteristic polynomial, and the number of three-element dependent sets—of a rank-n combinatorial geometry (or simple matroid) are the same as those of a rank-n projective geometry, then it is a projective geometry (of the same order). To do this, we use a lemma which is of independent interest: If H is a geometry in which all the lines have exactly ℓ  1 or ℓ points and G is a geometry with at least three of the four matroid invariants the same as H, then all the lines in G also have exactly ℓ  1 or ℓ points. An analogue of the characterization theorem holds for affine geometries. Our methods also yield inequalities amongst the four matroid invariants.  相似文献   

15.
We study the structure of the minimum weight base of a matroid M = (E, I) the order of whose element set E is determined by the interleaving of two ordered subsets of E, R and W. The results imply an interesting application in economics, and are useful for the rapid recomputation of the minimum weight base when the order of E is successively modified by changing the interleaving of R and W. As a special case of the main result, the following parametric problem is efficiently solved: For M = (E, I) a matroid with weighted element set E, and R a subset of E, find for all feasible values of q, the minimum weight base of M containing exactly q elements of R. This parametric problem is a weighted matroid intersection problem and hence can be solved by known matroid intersection algorithms. The approach in this paper is different, and vastly improves the efficiency of the solution, as well as determining structural information about the bases.  相似文献   

16.
O(n3) algorithms to solve the weighted domination and weighted independent domination problems in permutation graphs, and an O(n2) algorithm to solve the cardinality domination problem in permutation graphs are presented.  相似文献   

17.
In this paper, we present an O(r 4 n) algorithm for the linear matroid parity problem. Our solution technique is to introduce a modest generalization, the non-simple parity problem, and identify an important subclass of non-simple parity problems called easy parity problems which can be solved as matroid intersection problems. We then show how to solve any linear matroid parity problem parametrically as a sequence of easy parity problems.In contrast to other algorithmic work on this problem, we focus on general structural properties of dual solutions rather than on local primal structures. In a companion paper, we develop these ideas into a duality theory for the parity problem.  相似文献   

18.
We consider the single machine scheduling problem to minimize total completion time with fixed jobs, precedence constraints and release dates. There are some jobs that are already fixed in the schedule. The remaining jobs are free to be assigned to any free-time intervals on the machine in such a way that they do not overlap with the fixed jobs. Each free job has a release date, and the order of processing the free jobs is restricted by the given precedence constraints. The objective is to minimize the total completion time. This problem is strongly NP-hard. Approximability of this problem is studied in this paper. When the jobs are processed without preemption, we show that the problem has a linear-time n-approximation algorithm, but no pseudopolynomial-time (1 − δ)n-approximation algorithm exists even if all the release dates are zero, for any constant δ > 0, if P ≠ NP, where n is the number of jobs; for the case that the jobs have no precedence constraints and no release dates, we show that the problem has no pseudopolynomial-time (2 − δ)-approximation algorithm, for any constant δ > 0, if P ≠ NP, and for the weighted version, we show that the problem has no polynomial-time 2q(n)-approximation algorithm and no pseudopolynomial-time q(n)-approximation algorithm, where q(n) is any given polynomial of n. When preemption is allowed, we show that the problem with independent jobs can be solved in O(n log n) time with distinct release dates, but the weighted version is strongly NP-hard even with no release dates; the problems with weighted independent jobs or with jobs under precedence constraints are shown having polynomial-time n-approximation algorithms. We also establish the relationship of the approximability between the fixed job scheduling problem and the bin-packing problem.  相似文献   

19.
The hypergraph matching problem is to find a largest collection of disjoint hyperedges in a hypergraph. This is a well-studied problem in combinatorial optimization and graph theory with various applications. The best known approximation algorithms for this problem are all local search algorithms. In this paper we analyze different linear and semidefinite programming relaxations for the hypergraph matching problem, and study their connections to the local search method. Our main results are the following:
  • We consider the standard linear programming relaxation of the problem. We provide an algorithmic proof of a result of Füredi, Kahn and Seymour, showing that the integrality gap is exactly ${k-1+\frac{1}{k}}$ for k-uniform hypergraphs, and is exactly k ? 1 for k-partite hypergraphs. This yields an improved approximation algorithm for the weighted 3-dimensional matching problem. Our algorithm combines the use of the iterative rounding method and the fractional local ratio method, showing a new way to round linear programming solutions for packing problems.
  • We study the strengthening of the standard LP relaxation by local constraints. We show that, even after linear number of rounds of the Sherali-Adams lift-and-project procedure on the standard LP relaxation, there are k-uniform hypergraphs with integrality gap at least k ? 2. On the other hand, we prove that for every constant k, there is a strengthening of the standard LP relaxation by only a polynomial number of constraints, with integrality gap at most ${\frac{k+1}{2}}$ for k-uniform hypergraphs. The construction uses a result in extremal combinatorics.
  • We consider the standard semidefinite programming relaxation of the problem. We prove that the Lovász ${\vartheta}$ -function provides an SDP relaxation with integrality gap at most ${\frac{k+1}{2}}$ . The proof gives an indirect way (not by a rounding algorithm) to bound the ratio between any local optimal solution and any optimal SDP solution. This shows a new connection between local search and linear and semidefinite programming relaxations.
  •   相似文献   

    20.
    Matroid theory has been applied to solve problems in generalized assignment, operations research, control theory, network theory, flow theory, generalized flow theory or linear programming, coding theory, and telecommunication network design. The operations of matroid union, matroid partitioning, matroid intersection, and the theorem on the greedy algorithm, Rado's theorem, and Brualdi's symmetric version of Rado's theorem have been important for some of these applications. In this paper we consider the application of matroids to solve problems in network synthesis. Previously Bruno and Weinberg defined a generalized network, which is a network based on a matroid rather than a graph; for a generalized network the duality principle holds whereas it does not hold for a network based on a graph. We use the concept of the generalized network to formulate a solution to the following problem: What are the necessary and sufficient conditions for a singular matrix of real numbers, of order p and rank s, to be realizable as the open-circuit resistance matrix of a resistance p-port network. A simple algorithm is given for carriyng out the synthesis. We then present a number of unsolved problems, included among which is what could be called the four-color problem of network synthesis, namely, the resistance n-port problem.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号