首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider the rectilinear version of the quadratic assignment problem (QAP). We define a class of edge-weighted graphs with nonnegatively valued bisections. For one important type of such graphs we provide a characterization of point sets on the plane for which the optimal value of the related QAP is zero. These graphs are used in the algorithms for generating rectilinear QAP instances with known provably optimal solutions. The basic algorithm of such type uses only triangles. Making a reduction from 3-dimensional matching, it is shown that the set of instances which can be generated by this algorithm is hard. The basic algorithm is extended to process graphs larger than triangles. We give implementation details of this extension and of four other variations of the basic algorithm. We compare these five and also two existing generators experimentally employing multi-start descent heuristic for the QAP as an examiner. The graphs with nonnegatively valued bisections can also be used in the construction of lower bounds on the optimal value for the rectilinear QAP.  相似文献   

2.
The quadratic assignment problem (QAP) belongs to the hard core of NP-hard optimization problems. After almost forty years of research only relatively small instances can be solved to optimality. The reason is that the quality of the lower bounds available for exact methods is not sufficient. Recently, lower bounds based on decomposition were proposed for the so called rectilinear QAP that proved to be the strongest for a large class of problem instances. We investigate the strength of these bounds when applied not only at the root node of a search tree but as the bound function used in a Branch-and-Bound code solving large scale QAPs.  相似文献   

3.
The quadratic assignment problem (QAP) is a challenging combinatorial problem. The problem is NP-hard and in addition, it is considered practically intractable to solve large QAP instances, to proven optimality, within reasonable time limits. In this paper we present an attractive mixed integer linear programming (MILP) formulation of the QAP. We first introduce a useful non-linear formulation of the problem and then a method of how to reformulate it to a new exact, compact discrete linear model. This reformulation is efficient for QAP instances with few unique elements in the flow or distance matrices. Finally, we present optimal results, obtained with the discrete linear reformulation, for some previously unsolved instances (with the size n = 32 and 64), from the quadratic assignment problem library, QAPLIB.  相似文献   

4.
The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension \(n^2\) where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension \(\mathcal {O}(n)\) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Alternating Direction Method of Multipliers in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension \(\mathcal {O}(n)\). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy to tackle the assignment problem.  相似文献   

5.
二次分配问题(Quadratic assignment problem,QAP)属于NP-hard组合优化难题。二次分配问题的线性化模型和下界计算方法,是求解二次分配问题的重要途径。本文以二次分配问题的线性化模型为基础,根据现有QAP对偶上升下界计算方法中的具体操作,提出几种可行的QAP对偶上升计算新方法。最后,通过求解QA-PLIB中的部分实例,深入分析其运行结果,详细讨论了基于匈牙利算法求解二次分配问题的对偶方法中哪些操作可较大程度地提高目标函数最优解的下界增长速度,这为基于匈牙利算法求解二次分配问题的方法的改进奠定了基础。  相似文献   

6.
二次分配问题(Quadratic assignment problem,QAP)属于NP-hard组合优化难题.二次分配问题的线性化及下界计算方法,是求解二次分配问题的重要途径.以Frieze-Yadegar线性化模型和Gilmore-Lawler下界为基础,详细论述了二次分配问题线性化模型的结构特征,并分析了Gilmore-Lawler下界值往往远离目标函数最优值的原因.在此基础上,提出一种基于匈牙利算法的二次分配问题对偶上升下界求解法.通过求解QAPLIB中的部分实例,说明了方法的有效和可行性.  相似文献   

7.
The Quadratic Assignment Problem (QAP) can be solved by linearization, where one formulates the QAP as a mixed integer linear programming (MILP) problem. On the one hand, most of these linearizations are tight, but rarely exploited within a reasonable computing time because of their size. On the other hand, Kaufman and Broeckx formulation (Eur. J. Oper. Res. 2(3):204–211, 1978) is the smallest of these linearizations, but very weak. In this paper, we analyze how the Kaufman and Broeckx formulation can be tightened to obtain better QAP-MILP formulations. As shown in our numerical experiments, these tightened formulations remain small but computationally effective to solve the QAP by means of general purpose MILP solvers.  相似文献   

8.
We consider three known bounds for the quadratic assignment problem (QAP): an eigenvalue, a convex quadratic programming (CQP), and a semidefinite programming (SDP) bound. Since the last two bounds were not compared directly before, we prove that the SDP bound is stronger than the CQP bound. We then apply these to improve known bounds on a discrete energy minimization problem, reformulated as a QAP, which aims to minimize the potential energy between repulsive particles on a toric grid. Thus we are able to prove optimality for several configurations of particles and grid sizes, complementing earlier results by Bouman et al. (2013). The semidefinite programs in question are too large to solve without pre-processing, and we use a symmetry reduction method by Permenter and Parrilo (2020) to make computation of the SDP bounds possible.  相似文献   

9.
A robust search algorithm should ideally exhibit reasonable performance on a diverse and varied set of problems. In an earlier paper Lim et al. (Computational Optimization and Applications, vol. 15, no. 3, 2000), we outlined a class of hybrid genetic algorithms based on the k-gene exchange local search for solving the quadratic assignment problem (QAP). We follow up on our development of the algorithms by reporting in this paper the results of comprehensive testing of the hybrid genetic algorithms (GA) in solving QAP. Over a hundred instances of QAP benchmarks were tested using a standard set of parameters setting and the results are presented along with the results obtained using simple GA for comparisons. Results of our testing on all the benchmarks show that the hybrid GA can obtain good quality solutions of within 2.5% above the best-known solution for 98% of the instances of QAP benchmarks tested. The computation time is also reasonable. For all the instances tested, all except for one require computation time not exceeding one hour. The results will serve as a useful baseline for performance comparison against other algorithms using the QAP benchmarks as a basis for testing.  相似文献   

10.
Finding global optimum of a non-convex quadratic function is in general a very difficult task even when the feasible set is a polyhedron. We show that when the feasible set of a quadratic problem consists of orthogonal matrices from \mathbbRn×k{\mathbb{R}^{n\times k}} , then we can transform it into a semidefinite program in matrices of order kn which has the same optimal value. This opens new possibilities to get good lower bounds for several problems from combinatorial optimization, like the Graph partitioning problem (GPP), the Quadratic assignment problem (QAP) etc. In particular we show how to improve significantly the well-known Donath-Hoffman eigenvalue lower bound for GPP by semidefinite programming. In the last part of the paper we show that the copositive strengthening of the semidefinite lower bounds for GPP and QAP yields the exact values.  相似文献   

11.
This paper reports heuristic and exact solution advances for the Quadratic Assignment Problem (QAP).QAPinstances most often discussed in the literature are relatively well solved by heuristic approaches. Indeed, solutions at a fraction of one percent from the best known solution values are rapidly found by most heuristic methods. Exact methods are not able to prove optimality for these instances as soon as the problem size approaches 30 to 40. This article presents new QAP instances that are ill conditioned for many metaheuristic-based methods. However, these new instances are shown to be solved relatively well by some exact methods, since problem instances up to a size of 75 have been exactly solved.  相似文献   

12.
We consider one‐factorizations of K2n possessing an automorphism group acting regularly (sharply transitively) on vertices. We present some upper bounds on the number of one‐factors which are fixed by the group; further information is obtained when equality holds in these bounds. The case where the group is dihedral is studied in some detail, with some non‐existence statements in case the number of fixed one‐factors is as large as possible. Constructions both for dihedral groups and for some classes of abelian groups are given. © 2002 John Wiley & Sons, Inc. J Combin Designs 10: 1–16, 2002  相似文献   

13.
《Optimization》2012,61(6):933-943
We discuss special eases of the quadratic assignment problem (QAP) being polynomially solvable. In particular we give an algebraic condition for the cost; Matrices of a QAP which guarantees that it is equivalent with a linear assignment problem. Based on these results we develop an approximation algorithm for QAPs with non-negative symmetric cost matrices.  相似文献   

14.
The quadratic assignment problem (QAP), one of the most difficult problems in the NP-hard class, models many real-life problems in several areas such as facilities location, parallel and distributed computing, and combinatorial data analysis. Combinatorial optimization problems, such as the traveling salesman problem, maximal clique and graph partitioning can be formulated as a QAP. In this paper, we present some of the most important QAP formulations and classify them according to their mathematical sources. We also present a discussion on the theoretical resources used to define lower bounds for exact and heuristic algorithms. We then give a detailed discussion of the progress made in both exact and heuristic solution methods, including those formulated according to metaheuristic strategies. Finally, we analyze the contributions brought about by the study of different approaches.  相似文献   

15.
The only primes which can divide the order of the automorphism group of a Hadamard matrix of order 28 are 13, 7, 3, and 2, and there are precisely four inequivalent matrices with automorphisms of order 13 (Tonchev, J. Combin. Theory Ser. A35 (1983), 43–57). In this paper we show that there are exactly twelve inequivalent Hadamard matrices of order 28 with automorphisms of order 7. In particular, there are precisely seven matrices with transitive automorphism groups.  相似文献   

16.
Tree search procedures for solving the Koopmans Beckmann quadratic assignment problem (QAP) are unable to solve any reasonable size QAP's mainly because good quality lower bounds for this problem cannot be computed.The purpose of this paper is to propose a bounding technique based on the extraction from the QAP formulation, of a large linear assignment problem (which can then be solved optimally), leaving as a residual problem as ‘small’ a QAP as possible. The solution of this residual QAP can then be bounded by a separate procedure. This 2-step method produces improved bounds as compared with those produced by the direct application of the bounding algorithms to the original QAP. In addition, a procedure is described for the a priori fixing of variables in the QAP formulation, thus reducing the number of variables in the problem.  相似文献   

17.
A Tabu Search Algorithm for the Quadratic Assignment Problem   总被引:1,自引:0,他引:1  
Tabu search approach based algorithms are among the widest applied to various combinatorial optimization problems. In this paper, we propose a new version of the tabu search algorithm for the well-known problem, the quadratic assignment problem (QAP). One of the most important features of our tabu search implementation is an efficient use of mutations applied to the best solutions found so far. We tested this approach on a number of instances from the library of the QAP instances—QAPLIB. The results obtained from the experiments show that the proposed algorithm belongs to the most efficient heuristics for the QAP. The high efficiency of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances.  相似文献   

18.
This paper investigates a restricted version of the Quadratic Assignment Problem (QAP), where one of the coefficient matrices is an Anti-Monge matrix with non-decreasing rows and columns and the other coefficient matrix is a symmetric Toeplitz matrix. This restricted version is called the Anti-Monge—Toeplitz QAP. There are three well-known combinatorial problems that can be modeled via the Anti-Monge—Toeplitz QAP: (Pl) The Turbine Problem, i.e. the assignment of given masses to the vertices of a regular polygon such that the distance of the center of gravity of the resulting system to the center of the polygon is minimized. (P2) The Traveling Salesman Problem on symmetric Monge distance matrices. (P3) The arrangement of data records with given access probabilities in a linear storage medium in order to minimize the average access time. We identify conditions on the Toeplitz matrixB that lead to a simple solution for the Anti-Monge—Toeplitz QAP: The optimal permutation can be given in advance without regarding the numerical values of the data. The resulting theorems generalize and unify several known results on problems (P1), (P2), and (P3). We also show that the Turbine Problem is NP-hard and consequently, that the Anti-Monge—Toeplitz QAP is NP-hard in general. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Dedicated to the memory of Gene LawlerThis research has been supported by the Spezialforschungsbereich F 003 Optimierung und Kontrolle, Projektbereich Diskrete Optimierung.  相似文献   

19.
In this paper, we propose two exact algorithms for the GQAP (generalized quadratic assignment problem). In this problem, given M facilities and N locations, the facility space requirements, the location available space, the facility installation costs, the flows between facilities, and the distance costs between locations, one must assign each facility to exactly one location so that each location has sufficient space for all facilities assigned to it and the sum of the products of the facility flows by the corresponding distance costs plus the sum of the installation costs is minimized. This problem generalizes the well-known quadratic assignment problem (QAP). Both exact algorithms combine a previously proposed branch-and-bound scheme with a new Lagrangean relaxation procedure over a known RLT (Reformulation-Linearization Technique) formulation. We also apply transformational lower bounding techniques to improve the performance of the new procedure. We report detailed experimental results where 19 out of 21 instances with up to 35 facilities are solved in up to a few days of running time. Six of these instances were open.  相似文献   

20.
We study the integrality gap of the natural linear programming relaxation for the Bounded Color Matching (BCM) problem. We provide several families of instances and establish lower bounds on their integrality gaps and we study how the Sherali–Adams “lift-and-project” technique behaves on these instances. We complement these results by showing that if we exclude certain simple sub-structures from our input graphs, then the integrality gap of the natural linear formulation strictly improves. To prove this, we adapt for our purposes the results of Füredi (1981). We further leverage this to show upper bounds on the performance of the Sherali–Adams hierarchy when applied to the natural LP relaxation of the BCM problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号