首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extensional viscometer is described in which the liquid filament leaving a capillary is subjected to a stretching deformation. In order to keep the flow rate through the capillary unaltered upon inception of stretching, the pressure head at the capillary entrance has to be reduced by an amount equal to the extensional viscoelastic stress at the capillary exit. This affords a simple means of measuring small fluid forces such as those that occur in the stretching of dilute polymer solutions. Since stretch rates can be obtained from a knowledge of the mass flow rate and the filament diameter profile, extensional viscosities can be computed. The efficacy of the technique is demonstrated by obtaining the anticipated results for Newtonian liquids.  相似文献   

2.
We describe experimental results on the extensional viscosity of mobile polymer solutions obtained from two instruments, the first being a commercial Spin Line Rheometer and the second a custom-built lubricated-die Converging Flow Rheometer. The interpretation of data in terms of Trouton ratios is facilitated by a simple analysis for the Generalized Newtonian Fluid model.Agreement between data from the two rheometers is satisfactory and we show that polymer solutions can be either tension stiffening or tension thinning. However, the Trouton ratios in both cases are greater than the Newtonian values and we anticipate that this will always be the case for polymer solutions.Invited paper, presented at the 2nd Conference of European Rheologists, Prague, June 17–20, 1986  相似文献   

3.
We use a modified filament stretching rheometer to quantify the influence of a known controlled pre-shear history on the transient extensional viscosity of a dilute polymer solution. Two different types of pre-deformation are explored; both influence the subsequent stretching significantly, albeit in opposite ways. Small-amplitude oscillatory straining parallel to the direction of stretching enhances strain hardening and accelerates the tensile stress growth toward the steady-state value. Conversely, steady torsional shearing orthogonal to the direction of stretching retards strain hardening and results in a delayed approach to steady-state elongational flow. In both cases, the final steady-state extensional viscosity is the same as that observed with no pre-shearing. Calculations using a finitely extensible nonlinear elastic Peterlin dumbbell model qualitatively capture the trends observed in experiments, enabling interpretation of these observations in terms of the degree of polymer chain stretching imposed by the flow before extensional stretching.  相似文献   

4.
In this work liquid crystalline polymer (LCP) and thermoplastic (TP) blends with and without compatibilizer were studied with respect to their elongational flow behavior, under uniaxial extensional flow. This knowledge is important because in processes involving dominantly extensional deformations, like the case of the formation of the LCP fibrillation, transient extensional flow properties become more important than transient or steady-shear properties. In systems characterized by disperse phase morphologies (10 and 20 wt%) the LCP acts as a plasticizer, decreasing the viscosity of the system and increasing its durability with respect to that of the matrix. On the other hand, for a system in which a co-continuous morphology is present (40 wt% LCP) fibrils and droplets deformation occurs simultaneously, leading to a much higher strain hardening and durability. Moreover, the addition of compatibilizers to the blends gives rise to an increase of the strain hardening and to a decrease of the durability, which is in accordance with the mechanical properties, namely a higher Young’s modulus and lower elongation at break, in comparison with noncompatibilized systems.  相似文献   

5.
This paper presents results on the rheological behaviour of suspensions of two kinds of TiO2 particles in two different polymer solutions. The particles differ in their hydrophilic or hydrophobic properties. The dispersing media are a solution of high molecular weight polyisobutylene in decalin and a solution of a low molecular weight polybutene in decalin. The concentrations of polymer are adjusted in order to get the same zero shear viscosity. The shear viscosity measurements display an apparent yield stress in some cases. The existence and the values of the yield stress depend on the volume fraction of solid particles and on the type of particles. The evolution of the intrinsic viscosity and of the maximum packing fraction vs the shear rate is interpreted in terms of evolution of the size and of the shape of aggregates of particles under shear. The effect of temperature on the development of the yield stress is also discussed. The results are completed by microscopic observations.  相似文献   

6.
The effect of polymer concentration on the conformation of semidilute polymer solutions in extensional flows is studied via the interacting elastic dumbbell model proposed by Hess (1984), here modified to include a nonlinear Warner spring (FENE dumbbell) instead of the linear Hookean spring of the original model. The length of flow-induced conformation changes for the polymer is predicted to be a decreasing function of concentration. In particular, increasing concentration tends to inhibit large extension of the polymer due to polymer-polymer interaction. The specific birefringence is thus proportional to c –1 for semi-dilute solutions, in contrast to dilute solutions where it is known to be independent of concentration. However, the correlation between birefringence and the principle eigenvalue of the velocity gradient tensor, also found originally for dilute solutions, is predicted to occur in the semi-dilute regime. All of these predictions agree qualitatively with experimental observations.Some recent exceptions to the neglect of segmental stretch can be found in Marrucci and Grizzuti (1988), Pearson et al. (1991), Mead et al. (1992).  相似文献   

7.
Knowledge of the extensional behaviour of polymer melts is extremely important due to the industrial relevance of extensional flows in common processing techniques and sequences such as blow moulding, film blowing, fibre spinning, melt flow through extrusion dies and injection mould filling. One of the main problems both researchers and industrialists come across is the fact that, unlike shear flows, steady-state extensional flows are not easy to generate and maintain experimentally. This fact limits the extent to which one can characterise the materials and, therefore, the degree of optimisation of the productive process. In this paper, a modification to a commercially available controlled rate rotational rheometer is proposed in order to produce a cheap, easy to set-up, flexible extensional rheometer. This is based on the well-known Meissner-type extensional rheometer and makes use of the accurate velocity control and torque measurement possibilities of the rotational apparatus. In this case, the adaptation was performed on a TA Instruments Weissenberg Rheogoniometer, but the idea is applicable to most other similar devices. The feasibility of the modification will be discussed and confirmed, results being presented for two materials at different temperatures. These include the calculation of transient uniaxial extensional viscosity and a study of rupture conditions.  相似文献   

8.
The viscosity of moderately dilute polymer solutions is formulated on the postulates that in this concentration region is governed by the domain volume per polymer segment and the noddle effect due to entangling chains. The former is treated semi-molecular theoretically, and the latter entirely phenomenologically. All the parameters involved in the theory can be estimated from appropriate dilute solution data as well as the asymptotic molecular-weight dependence of at different concentrations. It is shown that the theory describes almost quantitatively the experimental data obtained by Hamada and Adam and Delsanti for polystyrene in benzene and cyclohexane. Part of these data reveals the breakdown of the semidilute solution approximation used in the theory.  相似文献   

9.
Recent computational analysis of entrance flows (Mitsoulis et al. 1998) suggests that the entrance pressure drop is insensitive to large changes in steady extensional viscosity-a result that directly contradicts a large body of experimental work in this area. A re-examination of entrance flows using numerical simulations is presented in this work which shows that entrance pressure drops do depend on the steady extensional viscosity, provided the extension rate in the entrance flow is large enough. Numerical simulations are presented using both the strain thinning and thickening versions of the Phan-Thien–Tanner (PTT) constitutive model. Several techniques for extracting extensional viscosity from entrance pressure are applied to the results of these simulations. The resulting predictions of extensional viscosity are compared to the steady extensional viscosity curves predicted by the PTT constitutive model used to generate the simulated pressure drop curves. The analytical techniques examined here are shown to provide reasonably accurate estimates of the steady extensional viscosity. This work also clearly demonstrates the advantage of using variable power-law coefficients for the rheological properties, used as inputs to the analyses, to capture the extensional behavior at deformation rates below the power law region more accurately. Received: 23 July 1999/Accepted: 24 November 1999  相似文献   

10.
11.
A reappraisal of data obtained from a Converging Flow Rheometer (CFR) is presented, together with new results for a specific polymer solution.Particular emphasis is placed on the interpretation of the experimental pressure data in terms of a planar extensional viscosity. It is suggested that previous interpretations, while yielding viscosity levels that appear reasonable, nevertheless fail to give the qualitative behaviour that might be expected on the basis of predictions from well accepted constitutive models. This, in the authors' opinions, arises because certain fluids, i.e. those that are highly tension-thickening, cease to flow in accordance with the assumed kinematics at high flow rates.By adapting a recently proposed approximate analysis for flow through a contraction it is shown that better qualitative behaviour, for the planar extensional viscosity, can be obtained from the Converging Flow Rheometer.  相似文献   

12.
The transient uniaxial extensional viscosity η e of linear low density polyethylene (LLDPE) has been measured using the commercial Rheometric Scientific RME and the Münstedt Tensile Rheometer in an effort to compare the performance of available extensional rheometers. The RME indicated a significant strain hardening of the LLDPE, especially at a strain rate of 1 s−1. In contrast, the Münstedt rheometer showed the LLDPE to be only slightly strain hardening. This artificial strain hardening effect in the RME resulted from the strain rate applied to the sample, determined from the sample deformation, being up to 20% less than the set strain rate. These results initiated a round-robin experiment in which the same LLDPE was tested on several RMEs in various locations around the world. All but one of the RMEs indicated a deviation between set and applied strain rates of at least 10%, especially at strain rates above 0.1 s−1. The strain rate deviation was found to depend strongly on the value of the basis length L 0 , and may result from the upper pair of belts not properly gripping the sample during extension. Thus visual inspection of the sample deformation is necessary to determine the applied strain rate. The most accurate measurements of η e with respect to the strain rate deviation were obtained when the correct L 0 value and belt arrangement were used. A list of recommendations for running an RME test is provided. Future work focusing on the fluid mechanics during the test may identify fully the cause of the strain rate deviation, but from a practical point of view the problem can be corrected for in the determination of η e . Received: 27 September 2000/Accepted: 5 February 2001  相似文献   

13.
The surface tension of aqueous polymer solutions of polyacrylamide (PAM), polyacrylic acid (PAA), carboxymethyl cellulose (CMC), and hydroxyethyl cellulose (HEC) was studied over a range of polymer concentrations by using the maximum bubble pressure method at temperatures ranging from 20 to 65°C. The surface tension of water was also measured by the maximum bubble pressure method as well as by the DuNoüy ring method over the same temperature range. The experimental water data are in excellent agreement with the well-established tabulated data in the literature.

For a fixed concentration, all of the polymer solutions exhibited a decrease in surface tension with increasing temperature level. When compared with water at a fixed temperature level, the PAM and CMC solutions showed slightly higher surface tension values, whereas the PAA solutions yielded values equal to those found for water. In the case of the HEC solutions, the measured surface tensions decreased with concentration at a fixed temperature level and were lower than the values found for water. For a concentration of 2000 wppm the surface tension values for the hydroxyethyl cellulose were of the order of 10% lower than those for water at a fixed temperature level.

A comparison of the new measurements with the relatively limited previously published studies showed good agreement.  相似文献   


14.
15.
The characterization of the extensional rheology of polymeric solutions is important in several applications and industrial processes. Filament stretching and capillary breakup rheometers have been developed to characterize the extensional properties of polymeric solutions, mostly for high-viscosity fluids. However, for low concentration polymer solutions, the measurements are difficult using available devices, in terms of the minimum viscosity and relaxation times that can be measured accurately. In addition, when the slow retraction method is used, solvent evaporation can affect the measurements for volatile solvents. In this work, a new setup was tested for filament breakup experiments using the slow retraction method, high-speed imaging techniques, and an immiscible oil bath to reduce solvent evaporation and facilitate particle tracking in the thinning filament. Extensional relaxation times above around 100 μs were measured with the device for dilute and semi-dilute polymer solutions. Particle tracking velocimetry was also used to measure the velocity in the filament and the corresponding elongation rate, and to compare with the values obtained from the measured exponential decay of the filament diameter.  相似文献   

16.
From stress-strain experiments in extensional and shearing flows, nonlinear strain measures and effective damping functions are derived for a polyisobutylene melt. The strain measures determined in planar extensional flow and in simple shear flow coincide. Experimental results are compared with predictions of two molecular theories, the Doi-Edwards model and the molecular stress function approach of Wagner and Schaeffer. Discrepancies between theories and experiment lead to a reconsideration of the classification of extensional flows. The symmetry of the flow field is identified and quantified as an important parameter influencing the strain measure, and a unifying strain measure for general extensional and shearing flows of polymer melts is presented.  相似文献   

17.
The anomalous diffraction approximation (ADA) has bees recently applied to interpret measurements of the linear optical dichroism induced by shear in shear-thickening polymer solutions. A conceptual problem in this application is discussed, and a minor modification to the interpretation is proposed which is concordant with earlier magneto-optic results, but retains the correct use of the ADA.  相似文献   

18.
Summary Based on Maron-Pierce's equation, an empirical equation was suggested, which relates the relative viscosity ( r ) of the polymer melt filled with various inorganic filler, such as glass fiber, carbon fiber, talc, precipitated- and natural-calcium carbonate powder, and glassy small sphere, to the volume fraction () of the filler. The equation is r = (1 –/A)–2, whereA is a parameter relating to the packing geometry of the filler, which is similar to the parameter 0 in Maron-Pierce's equation. In the equation r is defined as the ratio of the viscosity of the filledsystem to that of the medium at the same shear stress not the shear rate. The applicability of the equation is above the shear stress about 104 dyne/cm2. The equation has a simple form and is considered to have a practical utility for filled-polymer melt systems.With 2 figures and 1 table  相似文献   

19.
The slip hypothesis, based on thermodynamical arguments, has been extended to obtain the flow characteristics of polymer solutions flowing in a nonhomogeneous flow field. An asymptotic analysis, valid for both channel and falling film flows, is presented that predicts the flow enhancement due to polymer migration. Concentration-viscosity coupling is shown to be a critical factor in the hydrodynamic analysis. The analysis, which essentially provides an upper bound on flow enhancement, explicitly accounts for the influence of wall shear stress, initial polymer concentration etc. A comparison with the pertinent experimental data shows reasonable agreement. c concentration - c 0 concentration in shear-free region - c i initial concentration - d rate of deformation tensor - g acceleration due to gravity - g 1 function defined in eq. [13] or [15] - g 2 function defined in eq. [18] or [20] - H half-channel thickness or film thickness - K gas law constant - L length of the channel or film - q flow rate per unit width - q * normalized flow rate - T temperature - v velocity - V mean velocity - y transverse distance - y c location of solvent layer - w s - w /c 0 KT - /t convected derivative - dimensionless cenentration,c/c 0 - c dimensionless interface concentration - w dimensionless wall concentration - relaxation time - µ eff effective viscosity - µ s solvent viscosity - dimensionless transverse distance,y/H - c dimensionless interface location - density - stress tensor - w wall shear stress - c i KT/ w - ns no slip NCL-Communication No. 3155  相似文献   

20.
The response of a considerable number of solutions of several polymers (PEO, HPAM, PAM) with concentrations of less than 100 ppm in orifice flow has been investigated. It is shown that the excess pressure (difference between the ADPS and the solvent total pressure drop) behaves linearly as a function of a superficial strain rate (ratio between a velocity and a length scale). In rheological terms this behaviour is interpreted as the result of a constant elongational viscosity whose values are two to three orders of magnitude larger than the shear viscosity. A formal approach to this phenomenological interpretation is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号