首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Using an analytical relation between the Hugoniot (anisotropic and isotropic) states and other thermodynamic (anisotropic and isotropic) states at high pressures, the effect of fiber orientation on the structure of shock waves in carbon fiber-epoxy composites of various symmetry is investigated. A correct nonlinear model of propagation of shock waves in anisotropic materials is proposed, which employs the conception of total generalized pressure and the pressure corresponding to the thermodynamic response, i.e., to the equation of state. The equation generalizes the nonlinear Hugoniot equation to anisotropic materials and is reduced to the classical variant in the case of isotropy. Invoking the relations of nonlinear anisotropic solids and the generalized decomposition of stress tensor, the double structure of shock waves, consisting of nonlinear anisotropic and isotropic elastic parts, is examined. The numerical calculations of Hugoniot levels of stress agree well with experimental data for a carbon fiber-epoxy composite selected.  相似文献   

7.
Conclusion An algorithm for calculating the dynamic viscoelastic characteristics of a composite reinforced with short fibers was developed and realized in the form of a computer program. An analysis was made of the dependence of the characteristics of the composite on the volume content and length of its fibers, as well as on statistical distributions of fiber length and orientation in the material. It was shown that a change in the parameters of the statistical distributions has a significant effect on both the elastic and the dissi-pative properties of the composite. It was found that ignoring the statistical fiber-length distribution might lead to overestimation of the real component of the complex modulus and underestimation of the mechanical loss tangent.Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 13–17, January–February, 1990.  相似文献   

8.
9.
10.
11.
The scale effect has been investigated in relation to the long-term strength of specimens of high-density polyethylene. Time dependences of the tensile strength at ordinary temperatures have been obtained. It is shown that the long-term strength depends on the dimensions of the specimen cross section. The deformation of the specimens depends on their size and the shape of the gage cross section.Higher Chemical Technology Institute, Sofia. Translated from Mekhanika Polimerov, No. 4, pp. 741–743, July–August, 1973.  相似文献   

12.
13.
An analysis of the mechanical and acoustic responses of a laminate composed of 12 layers of glass fiber fabric/epoxy resin and conditioned in environments with relative humidities of 0, 60, and 96% RH at 60°C is presented. The first part of the study consists in following the weight gain according to the duration of hygrothermal conditioning, and the second part—in test ing 45°-oriented specimens in uniaxial tension up to failure at constant imposed displacement rates, with registrating the acoustic emission to track the damage process. The influence of moisture content in the material showed up as a significant decrease in its shear modulus, shear stress, and acoustic emission with growing quantity of absorbed water. An exponential function is proposed for describing the relationship between the varying shear modulus and the shear strain. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 5, pp. 595–602, September–October, 2007.  相似文献   

14.
15.
The mechanism by which fillers strengthen polymers is discussed, and the effect of fiber length on static and impact bending strength and on the area of the fracture surface is studied with reference to the example of a silicone composite. A correlation is established between the strength properties and the area of the fracture surface. On the basis of the data obtained it is shown that, as the fiber length increases, the fracture mechanism changes from extraction of the ends of the fibers along the fracture path to breakage of the fibers.Moscow Lomonosov Institute of Fine Chemical Technology. Ter-Gazaryan State Scientific-Research Planning Institute of Polymer Adhesives, Kirovakan. Translated from Mekhanika Polimerov, No. 3, pp. 445–449, May–June, 1971.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号