首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using our recently proposed quantum chemical model to simulate the effect of external forces acting on a molecule (Wolinski and Baker, Mol Phys 2009, 107, 2403), which we subsequently termed enforced geometry optimization (EGO), we investigate structural isomerism in C14H12, starting from cis‐stilbene. By applying an external force to pairs of carbon atoms, one from each “half” of the molecule, we have generated 10 different structural isomers. Each was characterized as a minimum by vibrational analysis. Not only can EGO generate potentially new, metastable isomers it can also provide good initial guesses for transition states connecting the starting and final structures, thus giving an estimate of the stability of the new isomers to rearrangement back to the starting material. In addition to the new isomers, we provide a full set of vibrational fundamentals for cis‐ and trans‐stilbene and 4a,4b‐dihydrophenanthrene. The agreement with experimental assignments is excellent, with mean average deviations for the stilbenes of 5.0 cm?1 or less. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
A simulation of the absorption and the fluorescence of acetone in aqueous solution is reported. The model has an explicit solvent representation with an effective ab initio treatment of the solute. The model attempts to balance quantum chemistry, intermolecular interactions and statistical thermodynamics. It includes a non-electrostatic perturbation on the solute which models the solute–solvent exchange repulsion and the restriction put on the electronic structure of the solute by the antisymmetry to the solvent. The solvent shift to the absorption transition is found to be between 0.16 and 0.21 eV; the shift to the fluorescence transition is found to be between 0.02 and 0.05 eV. The simulation supports the conclusion that the first peak in the fluorescence spectrum of acetone is from a single molecule in equilibrium with the solvent, not from an excimer.  相似文献   

3.
A quasirelativistic perturbative method of ab initio calculations on ground and excited molecular electronic states and transition properties within the relativistic effective core potential approximation is presented and discussed. The method is based on the construction of a state‐selective many‐electron effective Hamiltonian in the model space spanned by an appropriate set of Slater determinants by means of the second‐order many‐body multireference perturbation theory. The neglect of effective spin–orbit interactions outside of the model space allows the exploitation of relatively high nonrelativistic symmetry during the evaluation of perturbative corrections and therefore dramatic reduction of the cost of computations without any contraction of the model‐space functions. One‐electron transition properties are evaluated via the perturbative construction of spin‐free transition density matrices. Illustrative calculations on the X0+ ? A1, B0+, and (ii)1 transitions in the ICl molecule are reported. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

4.
5.
6.
The use of the symmetric rank-one Hessian update and the Broyden–Fletcher–Goldfarb–Shano (BFGS) update formula are considered in an ab initio molecular geometry optimization algorithm. It is noted that the symmetric rank-one Hessian update has an advantage when compared with the BFGS update formula and this advantage must be more evident in the optimization of molecular geometry, because the total energy surface is a near-quadratic function with a small nonlinearity close to a minimum point. The results obtained in geometry optimization of a test group of molecules support this proposal and show that the use of the symmetric rank-one Hessian update formula permits reduction of the number of energy and gradient evaluations needed to locate a minimum on the energy surface. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1877–1886, 1998  相似文献   

7.
Here, we present a simulation study of temperature-dependent electronic transitions in BiVO3 (BVO) and BiNbO3 (BNO) using density functional theory (DFT) together with generalized gradient approximation (GGA) and two-dimensional correlation analysis (2D-CA). The results indicate that heat accumulation can accelerate the degeneracy of V-3d orbital in BVO and the splitting of Nb-4d orbital in BNO at 750 K. We found changes in the type of d–p hybrid orbital as follows, for BVO: V-dx2+y2 + dZ2-O-2pz → V-dx2+y2-O-2pz; and for BNO: Nb-dx2+y2-O-2pz → Nb-dx2+y2 + dZ2-O-2pz. Furthermore, we found changes in the type of hybrid orbital leading to the following electron–electron interactions, for BVO: t2g (V-dZ2-O-2pz) + eg (V-dx2+y2-O-2pz) → t2g (V-dx2+y2-O-2pz); and for BNO: t2g + eg (Nb-dx2+y2 + dZ2-O-2pz) → t2g (Nb-dx2+y2-O-2pz) + eg (Nb-dz2-O-2pz). The electronic transitions are determined by a charge-transfer from the occupied O-2p4 orbitals to the unoccupied V-3d3 (or Nb-4d3) and Bi-6p3 orbitals. Due to the temperature-dependent electronic structure closely related to these electronic transitions, this study provides a new perspective for the design and improvement of BFO-based temperature-sensitive devices.  相似文献   

8.
The problem of the assignment of π-electronic transitions in benzene is discussed using all criteria presently available. It is shown that based on this information a few different assignments are impossible to exclude. The correct assignment 3B1u < 3E1u < 1B2u < 3B2u < 1B1u < 3E+2g < 1E1u < 1E?2g < 3E?2g has been selected as result of theoretical considerations based on a new approach to the semi-empirical π-electron theory. The results confirm the adequacy of the π-electron model for energy level calculations, and emphasise the fundamental importance of multi-excited configurations.  相似文献   

9.
The correlation comparison of energy levels of aqua complexes of row IV transition metals was calculated using different methods on the basis of the WinGAMESS program with standard potentials of these systems and experimental values of the rate constants. The calculation showed that the use of DFT (density functional theory) considerably increases the reliability of calculations.  相似文献   

10.
11.
The X-ray diffraction of crystalline 1,2-dihydro-3H-benz[e]inden-3-one (DHBI) reveals that the molecular geometry is fully planar in the electronic ground state. Glassy solutions of naphthaldehyde, 2-acetonaphthone and methyl 2-naphthoate in the mixtures methylcyclohexane/iso-pentane (MIP) and methanol/ethanol (ME) are phosphorescent. DHBI in ME shows phosphorescence, but in MIP it is non-phosphorescent. The phosphorescence spectra of these compounds and of naphthalene have a strong resemblance. This is in accordance with a molecular distortion in the lowest triplet state, which decouples the π electron systems of the carbonyl group and the naphthyl group. The absence of phosphorescence of DHBI in MIP, indicates a geometry of the triplet state, having a non-planar naphthalene ring, when the molecule is in the non-hydrogen bonded form.  相似文献   

12.
By an application to small silicon clusters Si N (with N = 4,5,7,10) it is shown that truly global geometry optimization on an ab initio or density functional theory level can be achieved, at a computational cost of approximately 1–5 traditional local optimization runs (depending on cluster size). This extends global optimization from the limited area of empirical potentials into the realm of ab initio quantum chemistry. Received: 24 February 1998 / Accepted: 6 March 1998 / Published online: 17 June 1998  相似文献   

13.
A method is proposed to easily reduce the number of energy evaluations required to compute numerical gradients when constraints are imposed on the system, especially in connection with rigid fragment optimization. The method is based on the separation of the coordinate space into a constrained and an unconstrained space, and the numerical differentiation is done exclusively in the unconstrained space. The decrease in the number of energy calculations can be very important if the system is significantly constrained. The performance of the method is tested on systems that can be considered as composed of several rigid groups or molecules, and the results show that the error with respect to conventional optimizations is of the order of the convergence criteria. Comparison with another method designed for rigid fragment optimization proves the present method to be competitive. The proposed method can also be applied to combine numerical and analytical gradients computed at different theory levels, allowing an unconstrained optimization with numerical differentiation restricted to the most significant degrees of freedom. This approach can be a practical alternative when analytical gradients are not available at the desired computational level and full numerical differentiation is not affordable. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
The ˜c state of CH2 is found to be bent at the highest levels of theory used in this work, but the energy difference between the linear and bent geometries is only about 10 cm−1. Improving the basis set or correlation treatment favors the linear geometry over the bent, thus it is impossible to definitively determine if the ˜c state has a barrier in its bending potential. If there is a barrier, it is clear that it will be so small that the ˜c state will be quasilinear. Received: 3 September 1996 / Accepted: 23 September 1996  相似文献   

15.
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non‐reaction‐center (surrounding) part is optimized by fixing atoms in the reaction‐center part before displacements of the reaction‐center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction‐center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM‐ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM‐ONIOM‐microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
A comprehensive calculations were carried out to get a deep insight into the ground- and excited-state electronic structures and the spectroscopic properties for a series of [Pt(4-X–trpy)CCC6H4R]+ complexes (trpy = 2,2′,6′,2″-terpyridine; X = H, R = NO2 (1), Cl (2), C6H5 (3) and CH3 (4); R = Cl, X = CH3 (5) and C6H5 (6)). MP2 (second-order Møller–Plesset perturbation) and CIS (single-excitation configuration interaction) methods were employed to optimize the structures of 1–6 in the ground and excited states, respectively. The investigation showed that substituted phenylacetylide and trpy ligands only give rise to a small variation in geometrical structures but lead to a sizable difference in the electronic structures for 1–6 in the ground and excited states. The introduction of electron-rich groups into the phenylacetylide and/or terpyridyl ligands produces two different low-lying absorptions for 1 and 2–6, i.e., Pt(5d) → π*(trpy) metal-to-ligand charge transfer (MLCT) mixed with π → π*(CCPh) intraligand charge transfer (ILCT) for 1 and Pt(5d)/π(CCPh) → π*(trpy) charge transfer (MLCT and LLCT) for 26. Remarkable electronic resonance on the whole Pt–CCPh–NO2 moiety for 1 may be responsible for the difference. Solvatochromism calculation revealed that only LLCT/MLCT transitions showed the solvent dependence, consistent with the experimental observations.  相似文献   

19.
The recently developed spin Hamiltonian approach to conjugated-electron molecules is reexamined. A simultaneous optimization of the geometry and wave functions, achieved by the use of the conjugate gradient method, facilitates calculations of the molecular geometries in the ground and excited electronic states. The computation time increases approximately linearly with the number of basis functions, making calculations for molecules having up to 18 carbon atoms (48 620 basis functions) readily available. Geometries of several benzenoid hydrocarbons are optimized and the results are discussed.  相似文献   

20.
New equations are derived and implemented for efficient and accurate computation of solvation energy derivatives for the conductor-like polarizable continuum model (C-PCM) and the isotropic integral equation formalism polarizable continuum model (IEF-PCM). Two new molecular surface tessellation procedures GEPOL-RT and GEPOL-AS that generate near continuous potential energy surfaces are proposed for PCM geometry optimization. The combined use of these new techniques leads to efficient and convergent geometry optimizations with the PCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号