首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composites based on low-density polyethylene with elastomer filling particles are studied. A fracture mechanism induced by the fracture of filler particles or their separation from the matrix polymer is revealed. The fracture of the composites is caused by the growth of formed rhombic pores. The natural relative elongation in a neck is shown to be an important characteristic of a polymer. If the relative elongation in a neck is lower than the strain of appearance of rhombic pores, they form at the stage of uniform tension after necking, and the composite remains plastic. If the relative elongation in a neck is higher than the strain of formation of rhombic pores, they nucleate during necking, and the material undergoes quasi-brittle fracture. Good adhesion between the matrix polymer and elastic particles hinders the appearance of rhombic pores in a neck and, thus, retains high deformation properties of the composites.  相似文献   

2.
The optical reflectance and absorption spectra of nanocomposite materials based on iron and highpressure polyethylene (with different percentages of iron) were measured at room temperature in the visible and near-infrared regions. Oscillations of the absorption coefficient related to the optical transitions between minibands of the quantum well are revealed in the electronic spectrum of a metal nanoparticle. The experimental and theoretical data on the absorption coefficient are compared. It is shown that, with an increase in the iron concentration in the dielectric matrix, the discrepancy in the theoretical and experimental results decreases significantly.  相似文献   

3.
Composites based on polysterene and hybrid core-shell nanoparticles are studied; the nanoparticle core consists of silicon dioxide, and ethylphenylic groups (organic shell) are grafted to the core surface. It is shown that the permittivity, the volume resistivity, the thermostimulated depolarization current spectra, and the glass transition temperature of these materials depend on the nanofiller content and, what is more important, the nanofiller distribution over the polymer volume in the form of particles or their aggregates.  相似文献   

4.
The electrical and optical properties of polymer-silicon composites with particles incorporated by different means have been studied. It is shown that both when silicon particles are embedded in a carbazole-containing polymer matrix and in the case of a pure polymer, the I–V characteristics are nonlinear and asymmetric (the I–V characteristics of the carbazole-containing polyorganosiloxane, which has silicon atoms in the monomer link, behave in a more symmetric pattern). In all cases, the I-V characteristics can be fitted with power laws, I(V) ~ V p , with three different slopes for different voltage intervals, which remainds one of the pattern typical of the mechanism of space-charge-limited currents. It is shown that, in its luminescent properties, the carbazole-containing polyorganosiloxane is similar to a carbazole-containing polymer matrix with embedded silicon particles. The results obtained argue for charge transfer between the polymer and silicon nanoparticles if they are embedded in the matrix and for an formation of an interchain charge-transfer complex in the case of chemically bound silicon.  相似文献   

5.
6.
7.
Polymer composite materials have been prepared of multiwall carbon nanotubes synthesized by aerosol assisted chemical vapor deposition. To give them anisotropic properties, the obtained films have been subjected to tension. As a result of this deformation, the carbon nanotubes have been preferably oriented in the direction of the tension. The anisotropy of the relative permittivity of the extended films has been measured in the frequency range of 26–37 GHz (Ka band). A model of the correlation between the extent of the response anisotropy and the strain of the composite film has been elaborated. A way to control the electromagnetic response of the material on the basis of the elaborated model has been proposed.  相似文献   

8.
We present two laser ultrasonic receivers based on organic photorefractive polymer composites with 2-[4-bis(2-methoxyethyl)aminobenzylidene]malononitrile (AODCST) or 2-dicyanomethylen-3-cyano-5,5-dimethyl-4-(4′-dihexylaminophenyl)-2,5-dihydrofuran nonlinear optical chromophores. Experimental results show sensitivities of the ultrasonic receivers of ~9.5 × 10?8 nm (W/Hz)0.5 for both composites, and a faster response time (~60 ms) for the AODCST-based laser ultrasonic receiver. We show that such LUS detectors are highly suitable for contactless thickness measurements of aluminum, steel sheets and defect detection with an accuracy of 100 μm.  相似文献   

9.
Nanocomposites consisting of a polymethylmethacrylate or polystyrene matrix with embedded silicon dioxide nanoparticles surface-modified by silazanes have been prepared by melting technology. The influence of particles on viscoelastic properties of the nanocomposites has been studied using dynamic mechanical analysis. It has been revealed that the addition of 20 wt % of SiO2 raises the flexural modulus of the nanocomposites by 30%.  相似文献   

10.
11.
Wood/polyethylene (PE) composites are widely used in many fields for its excellent properties, but they are hard to adhere for the surface lacking of polarity. So low-pressure glow discharge of air plasma was used to improve the adhesion properties of wood/PE composites. The composites were treated by plasma under different discharge power. And the changes on the surface properties of the treated and untreated composites were studied by contact angle, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The measurement showed that the contact angle decreased after plasma treatment, and the contact angle decreased gradually with the increasing of discharge power. The FTIR analysis results showed that the polar groups such as hydroxyl, carbonyl and carboxyl were formed on the surface of the composites treated under plasma. SEM and AFM results showed that the roughness of plasma treated samples increased. XPS analysis results indicated that the content of carbon element decreased while the content of oxygen element in the composition of wood/PE composites surface element increased and it reached a balance in a higher power, meanwhile a lot of carboxyl groups were formed. The newly formed polar groups are benefit for the adhesion of composites. The shear bonding strength test showed that the adhesion properties of wood/PE composites improved effectively after plasma treatment.  相似文献   

12.
《Current Applied Physics》2001,1(2-3):139-143
We fabricated organic photovoltaic cells using poly[2-methoxy,5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and fullerene derivative, [6,6]-phenylen C61-butyric acid methyl ester (PCBM), composites with various concentrations of the PCBM. The devices exhibit photoluminescence quenching and enhancement in photovoltaic response with increasing PCBM concentrations, both of which are associated with the photoinduced charge transfer characteristics of these materials. We also investigate the PCBM concentration dependence on the device performance near the percolation threshold for fullerene derivative charge transport channel, and discuss the role of fullerene interpenetrating networks in these organic photovoltaic cells.  相似文献   

13.
Nickel plating graphite nanosheets (Ni/GNs) were prepared by electroless plating method using graphite nanosheets (GNs). Then a novel polymer magnetic composites based on acrylate pressure-sensitive adhesive (acrylate PSA) filled with Ni/GNs were fabricated by solution blend method. The Ni/GNs and acrylate PSA/Ni/GNs composites were characterized by scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscope (TEM). All results showed that relatively uniform and compact Ni layer is successfully coated onto GNs under the given conditions, furthermore, Ni/GNs are homogeneously dispersed in acrylate PSA. The VSM results showed that the saturation magnetization of acrylate PSA/Ni/GNs composites increases with an increasing content of Ni/GNs while the coercivity decreases with an increasing content of Ni/GNs. When the content of GNs is 20 wt%, acrylate PSA/Ni/GNs composites exhibites good mechanical properties.  相似文献   

14.
The thermal expansion coefficient (TEC) of poly-2,6-dimethyl-1,4-phenylene oxide (PDPO) decreases upon the introductions of copper and aluminum powders or pieces of glass and carbon fibers into the compound. This effect is associated with the formation of boundary layers of the matrix around filler particles. Molecules in the boundary layers are “straightened” and packed parallel to the filler surface, which decreases the TEC. The concentration dependences of the TEC have a minimum, which is explained by partial destruction of the boundary layers, when the mean distance between the surfaces of filler particles becomes smaller than their triple diameter.  相似文献   

15.
There has been a growing interest in the utilization of sisal fibres as reinforcement in the production of polymeric composite materials. Natural fibres have gained recognition as reinforcements in fibre polymer–matrix composites because of their mechanical properties and environmental friendliness. The mechanical properties of sisal fibre-reinforced polymer composites have been studied by many researchers and a few of them are discussed in this article. Various fibre treatments, which are carried out in order to improve adhesion, leading to improved mechanical properties, are also discussed in this review paper. This review also focuses on the influence of fibre content and fabrication methods, which can significantly affect the mechanical properties of sisal fibre-reinforced polymer composites.  相似文献   

16.
Qi Wang 《中国物理 B》2022,31(12):128801-128801
Nowadays, soft robots have become a research hot spot due to high degree of freedom, adaptability to the environment and safer interaction with humans. The carbon nanotube (CNT)/polydimethylsiloxane (PDMS) electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages. Here, the preparation process of CNT/PDMS composites was designed and optimized, and electrothermal actuators (ETAs) were fabricated by cutting the CNT/PDMS composite films into a "U" shape and coating conductive adhesive. The deformation performance of the ETAs with different thicknesses at different voltages was studied. At a low voltage of about 7 V, the ETA has a deformation rate of up to 93%. Finally, two kinds of electrothermal soft robots (ETSRs) with four-legged and three-legged structures were fabricated, and their inchworm-like motion characteristics were studied. The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.  相似文献   

17.
The photorefractivity of a photorefractive composite consisting of poly(N-vinylcarbazole) (PVK) doped with a non-room-temperature liquid crystal, 4-butyloxy-4’-cyanobiphenyl (4OCB), and C60 was studied by means of measuring the two-beam coupling coefficients. The results show that the photorefractivity is enhanced by phase separation. Received: 6 December 2000 / Revised version: 5 March 2001 / Published online: 9 May 2001  相似文献   

18.
The photorefractive properties of polymer composites based on aromatic polyimide and single-wall carbon nanotubes are studied using radiation at a wavelength of 1064 nm. It is found that the nanotubes possess photoelectric sensitivity in this spectral region and that the kinetic photorefractive characteristics of the polymer composites are entirely determined by the photogeneration and charge transport characteristics of the layers. The two-beam gain coefficient of the signal beam measured for a composite consisting of aromatic polyimide and 0.25 wt % of single-wall carbon nanotubes in a constant electric field E0 = 79 V/μm is equal to 84 cm?1 and exceeds the optical absorption coefficient by 59 cm?1. The refractive index modulation is equal to Δn = 0.004 at E0 = 54 V/μm.  相似文献   

19.
屈俊荣  郑建邦  王春锋  吴广荣  王雪艳 《物理学报》2013,62(12):128801-128801
基于碳纳米管的良好导电性、激子传输性能和量子点聚合物复合材料高的光电转换性能, 采用原位缩合法制备了聚合物聚(2-甲氧基-5-辛氧基)-对苯乙炔(MOPPV)功能化碳纳米管(SWNT)-PbSe量子点复合材料, 通过对复合材料的X射线衍射、透射电子显微镜和紫外可见吸收光谱研究, 发现MOPPV, SWNT与PbSe量子点可以有效地复合, 且SWNT与MOPPV形成网状结构; PbSe量子点尺寸为5.75 nm, 其可均匀地分散在MOPPV-SWNT基体中形成包覆或镶嵌结构, 并发生了光诱导电荷转移.通过对复合材料的光电性能研究发现, 当MOPPV, SWNT, PbSe三者的质量比为1: 0.3 : 1 时其光电性能最好, 开路电压为0.556 V, 短路电流为2.133 mA, 填充因子为34.48%, 转换效率为0.452%, 与聚合物MOPPV-PbSe量子点复合材料材料相比, 光电性能提高了2–3倍. 关键词: 量子点 碳纳米管 复合材料 转换效率  相似文献   

20.
Al-based composites reinforced by icosahedral (i-) Al59Cu25.5Fe12.5B3 quasicrystalline particles were prepared by solid-state sintering. It was found that Al diffusion from the matrix to the quasicrystalline particles induces phase transformation into the ω-Al7Cu2Fe tetragonal phase. In order to preserve the i phase, we used an oxidation pre-treatment of the particles and studied its influence on the kinetics of the phase transformation (Al + i → ω) as a function of temperature by high energy X-ray diffraction. The oxide layer acts as a barrier, reducing efficiently the diffusion of Al up to a sintering temperature of 823 K, allowing the control of the phases in the composites. The mechanical properties and the friction behaviour of the composites were investigated and show the negative influence of the oxide on the interface strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号