首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
电催化方法还原二氧化碳制备高附加值化学品,在降低二氧化碳浓度、平衡碳循环和储存可再生途径产生的电能等方面展现较大潜力。通过设计高效电催化剂来降低二氧化碳电催化还原过程所需的过电位并提高产物的选择性和电流密度,对电催化还原二氧化碳的发展和应用具有重要意义。本文总结了金属氧化物基材料作为电催化剂在二氧化碳电还原中的最新研究进展,深入探讨了金属氧化物在催化反应中的作用、稳定性及结构性能关系,并对金属氧化物基材料在二氧化碳电还原中未来的设计和研究方向做出思考。  相似文献   

2.
大规模化石燃料的使用排放了大量的二氧化碳(CO2),导致环境中二氧化碳的含量急剧增加. 为了降低大气中二氧化碳的含量,以电催化的方法将二氧化碳转化为有用的化工原料和燃料是解决能源和环境问题的重要途径. 本文主要利用氧化还原刻蚀法,在铜表面形成复合纳米结构,用于二氧化碳的电催化还原反应研究. 首先,作者通过一定浓度的三氯化铁(FeCl3)溶液与铜片的氧化还原反应,在刻蚀铜表面时形成具有立方体结构的氯化亚铜纳米材料,用于二氧化碳的电催化还原反应. 为了研究反应时间对催化性能的影响,作者通过改变反应时间(1、2、3和4 h)合成了不同结构的铜基催化剂. 研究发现,在反应3 h后,Cu-3h催化剂对二氧化碳的电催化还原具有较小的起始电压(-0.3 V vs. RHE)和较大的电流密度值,表现出了较强的还原能力. 经检测,所得到主要还原产物为一氧化碳(CO)和甲烷(CH4). 在-0.6 V时,二氧化碳催化还原的法拉第效率可达到60%,表明以氧化还原法刻蚀铜表面具有较好的改善二氧化碳电催化还原的能力.  相似文献   

3.
三相界面电催化二氧化碳还原研究进展   总被引:1,自引:0,他引:1  
马一宁  施润  张铁锐 《化学学报》2021,79(4):369-377
电催化二氧化碳还原是能源化学及催化科学的研究重点与难点.气-固-液三相界面模型作为物理化学中的基本概念,近年来被越来越多地应用于电催化二氧化碳还原反应的研究,其相比于传统固-液两相体系表现出了诸多优点.本综述阐述了三相界面电催化二氧化碳还原研究进展,对三相界面电催化体系进行分类及原理探究.再具体到二氧化碳还原反应,讨论...  相似文献   

4.
电化学还原二氧化碳为乙烯不仅能缓解温室效应而且能得到高附加值的石油化工产品乙烯。本文综述了近年来电催化还原二氧化碳产乙烯的研究进展,着重介绍了能将二氧化碳还原为乙烯的电催化剂,其中铜基催化剂是高选择性产生乙烯的有效电极材料,对铜催化剂进行掺杂、改性和修饰能够在保持催化剂高选择性产生乙烯的同时提高催化剂的稳定性和活性。本文还涉及了电催化条件下乙烯形成的机理以及反应条件对乙烯选择性的影响,简要介绍了二氧化碳在催化剂表面的三种吸附态和Cu(100)晶面形成乙烯的机理,以及不同电位、温度、压力、电解液组成和pH值对乙烯选择性的影响。最后,总结并展望了二氧化碳电催化还原产乙烯催化剂开发亟待解决的问题和未来的发展方向,期望为新型催化剂的构筑提供有益参考。  相似文献   

5.
利用可再生能源将二氧化碳(CO2)电催化还原为有价值的化学品和燃料,不仅可缓解温室效应,而且可实现碳资源的循环利用。以蛋白胨与盐形成的凝胶为原料,经高温热解后制备了用于电还原CO2的Ni-N掺杂碳多孔催化剂。该催化剂表现出优异的电催化还原CO2为CO的性能,在电压为-0.66 V(vs.RHE)下,CO的法拉第效率为92.0%,过电位为550 mV,还原电流密度为2.5 mA·cm-2。该催化剂优异的CO2的电催化活性归因于其存在的Ni-N活性位点和高度多孔的结构。此外,利用太阳能电池产生的电能,该催化剂可持续进行CO2电催化还原为CO,为CO2的资源化利用提供了有价值的参考。  相似文献   

6.
近年来,全球二氧化碳排放量逐年增加,对人们赖以生存的生态环境已造成严重威胁,因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注.与目前已开发的转化技术(如热催化和光催化等)相比,电催化二氧化碳转化技术具有稳定的效率、可控的选择性、简单的反应单元和巨大的工业应用潜力,是一种更为理想的转化技术之一.从反应动力学来看,目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度.另一方面,电催化二氧化碳转化包含多个质子和电子的耦合过程,反应过程包含多种路径,反应产物往往是混合物.在此背景下,如何发展高催化效率和高选择性电催化剂成为目前研究的焦点.在众多的电催化剂中,贵金属及其合金展现出较高的电催化二氧化碳还原活性,但储量小的缺点限制了其大规模的工业应用.铜基材料可以把二氧化碳转化为附加值更高的产品.然而,铜基材料仍难以克服选择性差、失活严重和效率低等缺点.作为一种更廉价的材料,碳基催化剂具有价廉、比表面积大、导电性好、化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究.然而,单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低,导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低.因此,开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力.过渡金属价电子在d轨道,而d轨道邻近费米能级,d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化,进而展现出多种催化活性.电催化二氧化碳还原是一个多电子和质子耦合过程,催化剂的本征活性由其表面电子结构决定.在此背景下,过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂.对于电催化二氧化碳还原,不同中间体的标度关系是制约反应总效率的关键因素.N?rskov等研究发现,MoS_2,MoSe_2和Ni掺杂MoS_2催化剂上存在不同种类的活性位点.不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立,从而有效打断中间体的标度关系.2014年,Salehi-Khojin等成功把MoS_2应用在高效电催化二氧化碳还原中.边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性.其它研究工作者通过引入掺杂物质,进一步提高了MoS_2的电催化二氧化碳还原性能.Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性,然而目前铁基催化剂的研究相对较少.Co基材料也可用于电催化二氧化碳转化.2016年,Xie等首次制备无机Co基材料用于电催化二氧化碳还原.部分氧化的钴可以促进速控步骤反应进程,进而降低整体反应的过电势.基于此,制备了超薄的Co_3O_4片层,发现价电子轨道中心更靠近费米能级时,电极材料展现出更高的催化活性.进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障.此外,Ni基材料也被证明具有高的催化二氧化碳转化活性.目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向,并且联系实验证明了方法的可行性.受到这些工作的启发,未来可将有巨大潜力的过渡金属基化合物化合物,例如过渡金属氮化物、过渡金属磷化物、过渡金属碳化物和过渡金属硼化物等,作为电催化剂研究其二氧化碳还原催化性能.另外,就目前的研究来看,将二氧化碳有效地还原到特定的产物仍存在巨大的挑战.如何优化过渡金属(Mo,Fe,Co和Ni)基催化剂价层d轨道结构,促进反应中间体吸附过程,将是解决催化活性和选择性这一科学问题的关键.  相似文献   

7.
二氧化碳(CO2)排放导致了严重的温室效应, 但作为重要的碳资源, CO2电催化还原合成化学品因反应条件温和、 反应产物可调及可有效利用分布式电能等优势而备受关注. 在该反应体系中, 电解液作为反应介质, 可提供质子和反应微环境, 影响分子/离子传输. 因此, 构建新型电解液体系对于提高CO2电催化还原产物的选择性和电流密度起到重要作用. 本文综合评述了CO2电催化还原过程中电解液的作用和研究现状, 重点总结了水系电解液中阴阳离子(碱金属阳离子、 卤素离子等)和离子液体电解液对CO2溶解度、 界面双电层结构(pH值、 电场效应)和中间体稳定性等的影响机制, 揭示了其调控对反应产物的选择性、 电流密度等的影响规律. 最后, 对电解液调控CO2电催化还原性能的研究进行了展望.  相似文献   

8.
郝金辉  施伟东 《催化学报》2018,39(7):1157-1166
近年来,全球二氧化碳排放量逐年增加, 对人们赖以生存的生态环境已造成严重威胁, 因此将二氧化碳转化成高附加值的化学品和燃料受到前所未有的广泛关注. 与目前已开发的转化技术(如热催化和光催化等)相比, 电催化二氧化碳转化技术具有稳定的效率?可控的选择性?简单的反应单元和巨大的工业应用潜力, 是一种更为理想的转化技术之一. 从反应动力学来看, 目前的催化剂仍难以克服反应过程中高的能量屏障以及迟缓的反应速度. 另一方面, 电催化二氧化碳转化包含多个质子和电子的耦合过程, 反应过程包含多种路径, 反应产物往往是混合物. 在此背景下, 如何发展高催化效率和高选择性电催化剂成为目前研究的焦点. 在众多的电催化剂中, 贵金属及其合金展现出较高的电催化二氧化碳还原活性, 但储量小的缺点限制了其大规模的工业应用. 铜基材料可以把二氧化碳转化为附加值更高的产品. 然而, 铜基材料仍难以克服选择性差?失活严重和效率低等缺点. 作为一种更廉价的材料, 碳基催化剂具有价廉?比表面积大?导电性好?化学性质稳定以及优异的机械性能等优点在电催化二氧化碳还原中得到了广泛的研究. 然而, 单纯的碳催化剂对于二氧化碳分子活化以及吸附反应中间体能力较低, 导致了碳基材料催化电催化二氧化碳还原活性以及选择性较低. 因此, 开发出可实际应用的高效率和高选择性非贵金属电极材料是当前该技术研究中亟待解决的关键科学问题.过渡金属基化合物在能源转化中展现出巨大的应用潜力. 过渡金属价电子在d轨道, 而d轨道邻近费米能级, d轨道电子填充的变化使得d轨道中心与费米能级相对位置发生变化, 进而展现出多种催化活性. 电催化二氧化碳还原是一个多电子和质子耦合过程, 催化剂的本征活性由其表面电子结构决定. 在此背景下, 过渡金属基化合物价层电子轨道的多变性使其成为提高电催化二氧化碳还原效率和选择性的理想催化剂. 对于电催化二氧化碳还原, 不同中间体的标度关系是制约反应总效率的关键因素. N?rskov等研究发现, MoS2, MoSe2和Ni掺杂 MoS2催化剂上存在不同种类的活性位点. 不同的活性位点可以分别吸附反应中间体并使中间体的吸附过程相对独立, 从而有效打断中间体的标度关系. 2014,Salehi-Khojin等成功把MoS2应用在高效电催化二氧化碳还原中. 边缘Mo原子d带电子靠近费米能级的特性使其具有更高的电催化活性. 其它研究工作者通过引入掺杂物质, 进一步提高了MoS2的电催化二氧化碳还原性能. Fe位点在理论上虽然具有很高的电催化二氧化碳转化活性, 然而目前铁基催化剂的研究相对较少. Co基材料也可用于电催化二氧化碳转化.2016年, Xie等首次制备无机Co基材料用于电催化二氧化碳还原. 部分氧化的钴可以促进速控步骤反应进程, 进而降低整体反应的过电势. 基于此, 制备了超薄的Co3O4片层, 发现价电子轨道中心更靠近费米能级时, 电极材料展现出更高的催化活性. 进一步研究发现氧空穴的存在也可以减小速控步骤的能量屏障. 此外, Ni基材料也被证明具有高的催化二氧化碳转化活性. 目前这些研究工作对如何构建高性能电极材料在理论上给出了指导方向, 并且联系实验证明了方法的可行性. 受到这些工作的启发, 未来可将有巨大潜力的过渡金属基化合物化合物, 例如过渡金属氮化物?过渡金属磷化物?过渡金属碳化物和过渡金属硼化物等, 作为电催化剂研究其二氧化碳还原催化性能. 另外, 就目前的研究来看, 将二氧化碳有效地还原到特定的产物仍存在巨大的挑战. 如何优化过渡金属(Mo, Fe, Co和Ni)基催化剂价层d轨道结构, 促进反应中间体吸附过程, 将是解决催化活性和选择性这一科学问题的关键.  相似文献   

9.
正先进的电催化体系是实现高效电能-化学能相互转换的核心。在绿色氢能、燃料电池和人工碳循环等领域,涉及多种典型的电极反应(包括水分解、氧还原和二氧化碳还原等)。而电极的组成部分之一,即驱动电化学反应所需的电催化材料,通常是决定电催化体系效能的关键。因此,电催化材料的组分、结构及界面特性成为了整个电化学学科的研究重点。在电催化材料的设计开发中,贵金属(如Pt、Pd、Ir等)通常具有较高的催化活性。但受限于极低的地壳丰度以及极高的原料成本,贵金属催化剂无法满足大规模实际生产的需求。因此,采用非贵金属电催化材料,以期降低电极中贵金属组分的用量,抑或完全取代贵金属材料,具有重要的现实意义。  相似文献   

10.
质子给受体是众多电催化反应中重要的参与者,质子给受体种类和浓度对电催化反应速率甚至产物种类均会有显著影响。本文从电催化析氢、二氧化碳的电化学还原、电催化析氧及醇的电化学氧化生成醛酮的典型反应机理出发,总结这4种电催化反应中所用质子给受体种类及质子转移路径等,探讨它们对电催化反应效率的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号