首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
惠鹏  杨蓉  邓七九  燕映霖  许云华 《化学通报》2019,82(11):982-988
锂硫电池因其能量密度高、原料丰富和价格低廉等优势而被认为是下一代的重要储能器件。但是,锂硫电池的发展仍面临诸多问题,包括多硫化物的穿梭效应、单质硫的导电性差、充电过程中硫体积膨胀导致的库仑效率差、容量快速衰减以及锂负极的腐蚀等。近年来,金属氧化物由于具有可吸附多硫化物、提高多硫化物之间的相互转化能力、形成3D形态纳米级结构及对主体材料与多硫化物之间的结合能发挥着关键作用等优点在锂硫电池正极材料的改性方面得到广泛应用。本文综述了多类金属氧化物(过渡金属氧化物、二元及多元金属氧化物、其他金属氧化物)在锂硫电池正极复合材料改性中的研究进展,并对金属氧化物在锂硫电池中的应用前景进行了展望。  相似文献   

2.
周兰  余爱水 《电化学》2015,21(3):211-220
二次锂硫电池被视为最具有发展潜力的下一代高能量密度二次电池之一. 但由于正极硫的电导率低(5×10-30 S·cm-1),且在放电过程中产生的中间体多硫化物易溶于有机电解液,致使锂硫电池活性物质利用率降低,溶解后的多硫化物还会迁移到负极,被还原成不溶物Li2S2/Li2S而沉积于负极锂,使电极结构遭受破坏,造成电池容量大幅衰减,循环性能差,从而限制了进一步的开发应用. 研究表明,以碳作为导电骨架的硫碳复合正极材料能在不同程度上解决上述问题,从而有效提高了锂硫电池的放电容量和循环性能. 本文综述了近年来国内外报道的各种锂硫电池正极材料的研究进展,结合作者课题组的研究,重点探讨了硫碳复合正极材料,并对其今后的发展趋势进行了展望.  相似文献   

3.
先进储能系统的开发对于满足电动汽车、便携式设备和可再生能源存储不断增长的需求至关重要. 锂硫(Li-S)电池具有比能量高、原材料成本低和环境友好等优点,是新型高性能电池研究领域中的热点. 然而,锂硫电池面向实际应用还存在许多问题,如可溶性多硫化物中间体的穿梭效应、锂枝晶生长以及锂硫电池在使用过程中的热稳定性和安全性等. 设计开发多功能涂层隔膜是改善锂硫电池上述不足的有效策略之一,在本综述中,详细论述了锂硫电池多功能涂层隔膜的研究进展. 包括聚合物材料、碳材料、氧化物材料、催化纳米粒子改性的功能化涂层隔膜及增强电池热稳定性、安全性的特种功能隔膜,对其作用特性进行了系统分析,并对未来研究发展提出展望.  相似文献   

4.
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。  相似文献   

5.
锂硫电池具有理论能量密度高、环境友好和成本低等优点,有望成为替代锂离子电池的新一代储能系统。然而,锂硫电池充放电产物的绝缘性、可溶性多硫化锂的穿梭效应、硫正极体积膨胀及锂枝晶的不可控生长,严重影响了锂硫电池的实际容量发挥和循环稳定性。为解决上述问题,采用有机硫化合物来替代单质硫作为正极材料是有前途的策略。调控有机硫化合物的硫链、碳链及其相互作用,可改变其电化学反应过程,提高离子/电子电导,抑制穿梭效应。有机硫化合物作为电解液添加剂,可调控硫正极的反应过程并保护金属锂负极,作为聚合物电解质的改性链段可加速锂离子传导。本综述对有机硫化合物在锂硫电池的正极、电解液添加剂和固态电解质中的应用研究进展进行详细的阐述。将有机硫化合物的结构、反应机理和电化学性质联系起来,为解决锂硫电池存在的问题提供见解。最后,提出高性能有机硫化合物的设计合成和机理研究思路,以期实现可实用化的锂硫电池。  相似文献   

6.
锂硫电池凭借超高理论容量和能量密度以及硫储量丰富和环境友好等优势被认为是极具发展前景的新一代高能电池体系。然而,活性硫及放电终产物导电性差、多硫化物穿梭效应、硫反应动力学缓慢等关键问题严重制约了其实际应用。研究人员采用硫正极设计、功能隔膜/中间层、电解质改性或固体电解质等策略,在解决以上问题方面取得重要进展。然而,针对锂硫电池内部实时动态反应过程、规律和机制以及电极/电解质界面设计调控策略仍缺乏深入认识。第一性原理计算逐渐发展为化学、材料、能源等诸多学科领域的重要研究工具,有助于从原子/分子水平理解反应中间产物性质、分子/电子间相互作用、电化学反应过程和规律、电极/电解质动态演化过程等,相较于“实验试错法”,其在研究锂硫电池内部多电子和多离子氧化还原反应方面具有显著优势。本文全面综述了运用第一性原理计算研究锂硫电池电极与多硫化物相互作用、充放电反应机制以及电解质三个方面的重要进展,展望了第一性原理计算应用于锂硫电池研究的当前挑战和未来发展方向。  相似文献   

7.
锂-硫电池由于具有高比能量以及硫廉价易得等优势而受到人们的广泛关注. 但其实际应用仍面临着来自于正极、电解液以及负极等方面的诸多挑战,具体包括硫正极的溶解、多硫化合物的“穿梭效应”及金属锂负极的枝晶问题. 本文以课题组近期的研究结果为主线,综述了近两年来关于锂-硫电池的研究进展,重点探讨了碳硫复合物正极、硫化锂正极、复合隔膜设计和电解液方面的研究进展,并总结了各方面存在的问题.  相似文献   

8.
在环境问题日益严峻,化石能源日益枯竭的今天,开发具有高比能的二次电池系统显得尤为重要。锂硫电池以其高理论能量密度和低环境影响的优势成为最有潜力的下一代电化学储能系统之一。然而受制于硫的绝缘性质以及由多硫化锂的溶解所引起的穿梭效应,锂硫电池的实用化进程还面临着诸多困难。为弥补常用的碳质载体对稳定硫电极的物理限制作用的不足,近年来对多硫化物具有强烈化学结合作用的载体材料的应用,显著提升了复合硫电极的综合性能,为锂硫电池正极材料的设计提供了新的思路。本文综述了各种具有化学吸附特性的载体材料在复合硫电极中的应用进展,具体包括:基于极性-极性作用固定多硫化物的金属氧化物、改性的碳质材料、能够与硫发生硫化作用的有机聚合物以及对多硫化物具有路易斯酸碱作用的金属有机骨架,重点阐述了这类载体材料与多硫化物的作用机理,并展望锂硫电池的发展方向。  相似文献   

9.
以锂为负极、硫为正极的锂/硫二次电池,由于其较高的理论能量密度(2 600Wh/kg),而成为最具发展潜力的新型高能化学电源体系.但是,硫正极材料存在的活性物质利用率偏低和循环性能较差等缺点制约了锂/硫电池的快速发展.本文主要综述了基于多孔碳材料负载硫来构筑硫/碳复合材料,进而改善硫电极材料电化学性能的研究进展,多孔碳...  相似文献   

10.
严重的多硫化物穿梭效应和转化缓慢等问题导致锂硫电池容量迅速衰减,其大规模应用受限。本文将金属有机框架材料(MOF)衍生碳(Ni,Co)/C用于锂硫电池隔膜改性,很好地解决了上述问题。钴镍双金属的协同作用分别实现了大量又快速的化学固硫和抑硫的可逆性,显著提高了锂硫电池的循环稳定性和倍率性能。在1C的电流密度下,(Ni,Co)/C改性隔膜电池的容量在第1次循环时可以达到1035.6 mAh·g-1,在500次循环后容量仍保持662.2 mAh·g-1,容量保持率为63.9%。此外,本工作克服了二元金属基MOF制备难的问题,使用简单快速的室温液相合成法制备了柱状镍钴二元MOF,该法有望实现MOF的宏观制备。  相似文献   

11.
Lithium–sulfur (Li‐S) batteries have been considered as a promising candidate for next‐generation electrochemical energy‐storage technologies because of their overwhelming advantages in energy density. Suppression of the polysulfide dissolution while maintaining a high sulfur utilization is the main challenge for Li–S batteries. Here, we have designed and synthesized double‐shelled nanocages with two shells of cobalt hydroxide and layered double hydroxides (CH@LDH) as a conceptually new sulfur host for Li–S batteries. Specifically, the hollow CH@LDH polyhedra with complex shell structures not only maximize the advantages of hollow nanostructures for encapsulating a high content of sulfur (75 wt %), but also provide sufficient self‐functionalized surfaces for chemically bonding with polysulfides to suppress their outward dissolution. When evaluated as cathode material for Li–S batteries, the CH@LDH/S composite shows a significantly improved electrochemical performance.  相似文献   

12.
We demonstrate the synthesis of cathode material with nanosized sulfur by a precipitation method making use of the alterable solubility of chitosan (CTS) in aqueous solution. Mesoporous Ketjen Black (KB) and carbon nanotube (CNT) are added as conductive agents to provide the three‐dimensional electric channels. This method can reduce the size of the sulfur particles, thus the nanosized sulfur obtained can fully contact with the conductive agent, which could increase the utilization of sulfur and improve the capacity of Li‐S batteries. Moreover, CTS with abundant hydroxyl and amine groups has strong interaction with polysulfides, which can improve the stability of Li‐S batteries. As a result, the obtained CTS/C‐S cathode containing 76 wt% sulfur delivers an impressively initial discharge specific capacity of 1141.6 mA·h·g–1 at 0.5 C and maintains a capacity of 842.3 mA·h·g–1 after 300 cycles. Our finding paves a way for the rational design of high‐performance sulfur cathodes for advanced Li‐S batteries.  相似文献   

13.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.  相似文献   

14.
Lithium–sulfur (Li–S) batteries are highly regarded as the next‐generation energy‐storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg?1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high‐energy‐density Li–SPAN batteries. However, the instability of the Li‐metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li‐metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li‐metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li‐metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

15.
Lithium–sulfur (Li–S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg−1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li–SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

16.
Heteroatom‐doped carbon materials have been extensively investigated as metal‐free electrocatalysts to replace commercial Pt/C catalysts in oxygen reduction reactions in fuel cells and Li–air batteries. However, the synthesis of such materials usually involves high temperature or complicated equipment. Graphene‐based sulfur composites have been recently developed to prolong the cycling life of Li–S batteries, one of the most attractive energy‐storage devices. Given the high cost of graphene, there is significant demand to recycle and reuse graphene from Li–S batteries. Herein, we report a green and cost‐effective method to prepare sulfur‐doped graphene, achieved by the continuous charge/discharge cycling of graphene–sulfur composites in Li–S batteries. This material was used as a metal‐free electrocatalyst for the oxygen reduction reaction and shows better electrocatalytic activity than pristine graphene and better methanol tolerance durability than Pt/C.  相似文献   

17.
For the past few years, a new generation of energy storage systems with large theoretical specific capacity has been urgently needed because of the rapid development of society. Lithium–sulfur (Li−S) batteries are regarded as one of the most promising candidates for novel battery systems, since their resurgence at the end of the 20th century Li−S batteries have attracted ever more attention, attributed to their notably high theoretical energy density of 2600 W h kg−1, which is almost five times larger than that of commercial lithium-ion batteries (LIBs). One of the determining factors in Li−S batteries is how to design/prepare the sulfur cathode. For the sulfur host, the major technical challenge is avoiding the shuttling effect that is caused by soluble polysulfides during the reaction. In past decades, though the sulfur cathode has developed greatly, there are still some enormous challenges to be conquered, such as low utilization of S, rapid decay of capacity, and poor cycle life. This article spotlights the recent progress and foremost findings in improving the performance of Li−S batteries by employing multifunctional metal phosphides as host materials. The current state of development of the sulfur electrode of Li−S batteries is summarized by emphasizing the relationship between the essential properties of metal phosphide-based hybrid nanomaterials, the chemical reaction with lithium polysulfides and the latter′s influence on electrochemical performance. Finally, trends in the development and practical application of Li−S batteries are also pointed out.  相似文献   

18.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

19.
We have designed and synthesized novel hollow Ni/Fe layered double hydroxide (LDH) polyhedrons as an advanced sulfur host for enhancing the performance of lithium–sulfur (Li–S) batteries. The Ni/Fe LDH host shows multiple advantages. First, the Ni/Fe LDH shells can provide sufficient sulfiphilic sites for chemically bonding with polysulfides. Second, the hollow architecture can provide sufficient inner space for both loading a large amount of sulfur and accommodating its large volumetric expansion. Moreover, once the active material is confined within the host, the shells could easily restrict the outward diffusion of polysulfides, guaranteeing prolonged cycle life even with high sulfur loading. As a result, the S@Ni/Fe LDH cathode has successfully solved the main issues related to sulfur electrodes, and it exhibits significantly improved electrochemical performances with prolonged life over 1000 cycles and excellent rate properties.  相似文献   

20.
《化学:亚洲杂志》2017,12(24):3128-3134
Lithium‐sulfur (Li‐S) batteries have recently attracted a large amount of attention as promising candidates for next‐generation high‐power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2‐graphitic carbon hollow nanofibers as sulfur hosts for high‐performance lithium‐sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li‐S batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号