首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《电化学》2021,(3)
利用可再生清洁能源将CO_2转化为CO和其他小分子是合成含碳燃料的可观方法之一。间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原。选择具有高活性和稳定性的电催化剂对于电化学还原CO_2至关重要。在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极。各项表征显示原子比约为1:1的CuAu纳米枝晶对CO_2的电化学还原具有出色的催化活性。合成的主要产物是H2和CO,这是合成气体是合成天然气,氨和甲醇合成的中间体。电化学阻抗谱(EIS)测量表明,相对于Cu和Au电沉积催化剂,CuAu纳米晶枝状催化剂具有相对低的电荷转移阻力。CuAu纳米枝晶催化剂是一种具有潜在的转化CO_2为合成气体的高活性电催化剂。  相似文献   

2.
CO_2电化学还原,特别是与间歇性的可再生电能相结合转化为液体燃料提供了一条很有前景的将电能存储为化学能的途径,它既降低了人们对化石燃料的依赖,又减轻了因人类活动而排放的CO_2对地球的不利影响.尽管CO_2转化为燃料本身不是一个新概念,但在过去的30多年里该领域的研究也没有很大的进展.这主要是由于结构型电催化剂的开发、以及可有效收集反应物和分离产物的膜组件的开发存在很大的挑战.本文总结了CO_2催化转化的最新进展,提出了制备高附加值燃料的挑战和未来的方向..  相似文献   

3.
二氧化碳(CO_2)是典型的温室气体,又是重要的可再生碳资源,实现CO_2的资源化利用是国际前沿和研究热点.结合本课题组的工作,本文总结和评述了离子液体特殊微观结构及离子微环境构筑、离子液体与CO_2间的相互作用机制、离子液体强化CO_2催化合成碳酸酯、CO_2电化学还原、CO_2生物催化还原方面的研究进展,并展望了未来发展方向.  相似文献   

4.
利用可再生清洁能源将CO2转化为CO和其他小分子是合成含碳燃料的可观方法之一.间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原.选择具有高活性和稳定性的电催化剂对于电化学还原CO2至关重要.在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极.各项表征显示原子比约为1∶1的CuA...  相似文献   

5.
周睿  韩娜  李彦光 《电化学》2019,25(4):445-454
二氧化碳(CO2)作为一种经济、安全、可再生的碳资源化合物,其高效回收利用一直是全社会关注的焦点. 利用电化学方法,将CO2还原转化生成一系列高附加值的化学品或燃料,对于缓解能源与环境双重压力具有重要的现实意义. 本论文介绍了电化学CO2还原反应的基本原理与过程,综述了近年来铋基催化材料的发展现状,重点对这类催化材料的制备合成、结构调控、催化反应机理研究等方面进行了总结,最后对其未来发展方向进行了探讨与展望.  相似文献   

6.
Ye WANG 《物理化学学报》2017,33(12):2319-2320
正作为主要温室气体的CO_2,也是一种自然界大量存在的"碳资源",若能借助太阳能和风能等可再生能源获取电能分解水制得的氢气,将CO_2转化为化学品或燃料,不仅能实现温室气体的减排,而且有助于解决对化石燃料的过度依赖以及可再生能源的存储问题~1。作为一类高碳烃类  相似文献   

7.
石油、天然气和煤等化石能源的转化利用不可避免排放大量的CO_2,造成一系列生态和环境问题.CO_2电化学还原可以在温和反应条件下将CO_2转化为CO或甲酸等,近年来受到研究者广泛关注,但因CO_2具有很稳定的化学结构,CO_2电化学还原要求催化剂具有高的活性,选择性和稳定性.贵金属如金和钯可以有效地将CO_2转化为相应的燃料如CO和甲酸等,但贵金属昂贵的价格限制了其大规模应用,所以迫使人们寻找非贵金属催化剂来替代它们.铟及其合金被应用于CO_2电化学还原生成甲酸,但在低过电位下,这些催化剂的电流密度和选择性都不理想.铜基催化剂也能催化CO_2电化学还原生成甲酸,但在短时间内稳定性较差.因此,需要进一步提高In和Cu催化剂上CO_2电化学还原的电流密度和稳定性.一种可能的解决方案是构建Cu-In双金属催化剂,通过两者的协同作用,有望提升在低过电位下CO_2电化学还原生成甲酸的电流密度和稳定性.在本工作中,我们通过氢气模板法制备出具有树枝状结构的Cu,然后在其表面均匀电沉积金属In.通过两步电沉积法制备出一种具有树枝状结构的Cu-In二元金属催化剂.控制电沉积In的时长分别为1.5,7.5,15,30和60 min.根据SEM及EDX元素分布图谱可知,随着电沉积In时间的增加,In在Cu表面的覆盖率逐渐增高.我们还研究了In的电沉积时间与其电化学活性表面积(ESA)之间的关系.结果表明,In的电沉积时间与其电化学活性表面积成正比,且当电沉积时间达到30 min时,电极具有最大的电化学活性表面积.具有树枝状结构的Cu-In-30催化剂ESA数值为8.7 cm~2,而不具备树枝状结构的In-30催化剂的ESA数值仅为2.4 cm~2.在-0.65 V vs.RHE至-1.05 V vs.RHE电位窗口中,与其它催化剂相比,Cu-In-30催化剂上CO_2电化学还原生成甲酸的法拉第效率最高可达87.4%.树枝状结构的Cu-In-30催化剂由于具有开放的三维结构,所以能够暴露出更多的活性位,从而提高了催化剂的电化学性能.在-0.85 V vs.RHE电位下,甲酸分电流密度可达42.0 m A cm~(-2),且具有较高的电化学稳定性(12 h).而不具有树枝状结构的In-30催化剂生成甲酸的法拉第效率为57.0%,且甲酸分电流密度为4.6 m A cm~(-2).  相似文献   

8.
针对日益严峻的CO_2过量排放问题,利用可再生能源驱动CO_2转化利用是理想的解决方案.采用电催化、光催化、光电催化以及生物光电催化CO_2还原的技术手段,以CO_2为原料获得高附加值的化学品或高能量密度的燃料,是当前世界范围内的研究热点.本文综述了近3年光、电、生物等催化CO_2转化所取得的重要研究进展,并对其未来发展方向进行了展望.  相似文献   

9.
大气中过高的CO_2浓度严重影响自然界的碳循环平衡,对全球气候和生态环境提出了严峻挑战.但同时CO_2作为一种潜在的碳资源,可通过催化转化生成高附加值的化学品. CO_2电化学还原反应(CO_2RR)可利用太阳能、风能等可再生能源产生的电能将CO_2直接转化生成高附加值化学品和燃料,有助于构建"碳中性"的能源循环利用网络,具有极具潜力的应用前景.然而,活化稳定的CO_2分子需克服一定的过电势,且由于反应在水相中进行, CO_2RR与析氢反应互相竞争,因此开发高效、廉价、稳定的催化剂一直是CO_2RR研究的难点.研究表明,含有金属-氮(M-Nx)活性位的催化材料如卟啉、酞菁等大环配合物、金属有机骨架材料以及通过热解法制备的金属-氮-碳(M-N-C)材料具有优异的CO_2RR性能.本文从实验和理论两方面综述了近年来该类材料领域的相关进展,重点介绍了金属位点种类、配体结构、载体选择对催化剂本征活性的影响,并讨论了反应条件优化对CO_2RR性能提升的作用.结合原位表征和理论计算结果探讨了含M-Nx材料反应条件下活性位的结构及反应路径,为合理设计和优化CO_2RR催化剂体系提供了新思路.  相似文献   

10.
电化学二氧化碳还原是利用电能驱动将CO_2高效转化为小分子碳基燃料的新方法,被认为是目前最具应用潜力的碳资源转化技术之一。然而,CO_2还原反应仍面临着诸多挑战,如反应过电位高,产物选择性低以及析氢反应的竞争等。因此,开发高效的电催化剂是发展CO_2还原技术的核心关键。近年来,Pd基材料在CO_2还原反应中表现出独特的催化性能优势:它不仅可以在接近平衡电位下高选择性地还原CO_2生成甲酸/甲酸盐,还能够在一定的负电位区间高效地还原CO_2生成CO。尽管如此,Pd基材料目前仍存在着成本较高、活性不理想以及稳定性差等问题,严重制约了其进一步应用与发展。对此,本文首先简单介绍了CO_2RR的基本原理,并综述了近年来Pd基催化剂电还原CO_2的应用研究及发展现状。重点探讨了尺寸效应、形貌效应、合金效应、核壳效应及载体效应等对Pd基催化剂性能的影响。最后针对这类材料的问题挑战及其未来发展方向进行了探讨与展望。  相似文献   

11.
利用可再生能源将二氧化碳(CO2)电催化还原为有价值的化学品和燃料,不仅可缓解温室效应,而且可实现碳资源的循环利用。以蛋白胨与盐形成的凝胶为原料,经高温热解后制备了用于电还原CO2的Ni-N掺杂碳多孔催化剂。该催化剂表现出优异的电催化还原CO2为CO的性能,在电压为-0.66 V(vs.RHE)下,CO的法拉第效率为92.0%,过电位为550 mV,还原电流密度为2.5 mA·cm-2。该催化剂优异的CO2的电催化活性归因于其存在的Ni-N活性位点和高度多孔的结构。此外,利用太阳能电池产生的电能,该催化剂可持续进行CO2电催化还原为CO,为CO2的资源化利用提供了有价值的参考。  相似文献   

12.
Industrial revolution has led to increased combustion of fossil fuels. Consequently, large amounts of CO2 are emitted to the atmosphere, throwing the carbon cycle out of balance. Currently, the most effective method to reduce the CO2 concentration is direct CO2 capture from the atmosphere and pumping of the captured CO2 deep underground or into the mid-ocean. The transformation of CO2 into high-value chemicals is an attractive yet challenging task. In recent years, there has been much interest in the development of CO2 utilization technologies based on electrochemical CO2 reduction, photochemical CO2 reduction, and thermal CO2 reduction, and CO2 valorization has emerged as a hot research topic. In electrochemical CO2 reduction, the cathodic reaction is the reduction of CO2 to value-added chemicals. The anodic reaction should be the oxygen evolution reaction, and water is the only renewable and scalable source of electrons and protons in this reaction. There is a plethora of research on the use of various metals to catalyze this reaction. Among these, Cu-based materials have been demonstrated to show unique catalytic activity and stability for the electrochemical conversion of CO2 to valuable fuels and chemicals. Moreover, the solar-driven conversion of CO2 into value-added chemical fuels has attracted great attention, and much effort is being devoted to develop novel catalysts for the photoreduction of CO2, especially by mimicking the natural photosynthetic process. The key step in the photocatalytic process is the efficient generation of electron-hole pairs and separation of these charge carriers. The efficient separation of photoinduced charge carriers plays a crucial role in the final catalytic activity. Compared with CO2 reduction via electrocatalysis and photocatalysis, thermal reduction is more attractive because of its potential large-scale application in the industry. Heterogeneous nanomaterials show excellent activity in the electrocatalytic, photocatalytic, and thermal catalytic conversion of CO2. However, nanostructured materials have drawbacks on the investigation of the intrinsic activity of the active sites. In recent years, single-site catalysts have become popular because they allow for maximum utilization of the metal centers, show specific catalytic performance, and facilitate easy elucidation of the catalytic mechanism at the molecular level. Accordingly, numerous single-site catalysts were developed for CO2 reduction to produce value-added chemicals such as CO, CH4, CH3OH, formate, and C2+ products. Value-added chemicals have also been synthesized with the aid of amines and epoxides. This review summarizes recent state-of-the-art single-site catalysts and their application as heterogeneous catalysts for the electroreduction, photoreduction, and thermal reduction of CO2. In the discussion, we will highlight the structure-activity relationships for the catalytic conversion of CO2 with single-site catalysts.  相似文献   

13.
杨帆  邓培林  韩优嘉  潘静  夏宝玉 《电化学》2019,25(4):426-444
由于不断增加的二氧化碳排放导致全球变暖,且能源短缺等问题日益恶化,将二氧化碳电化学还原为高附加值化学品和燃料引起了极大的兴趣,设计高效催化剂对实现二氧化碳的高效选择性转化具有重要意义. 在所探索的各种催化剂中,铜基催化剂具有良好的开发潜力,可用于烃类生产. 本文综述了铜基电化学二氧化碳转化材料的最新进展. 分别从尺寸结构到不同形式(合金、氧化物)的铜基催化剂,以及分子催化剂等方面展开,重点讨论铜基催化剂上二氧化碳电解还原的反应机理. 最后,对未来高效铜基催化剂的设计提出展望,以促进二氧化碳转化的可持续发展.  相似文献   

14.
工业规模的化石能源消耗导致大气中二氧化碳含量不断增加,CO2转化利用成为人们日益关注的热点问题. 金属铜因其成本低廉、储量丰富,并且具有独特的CO2亲和力能够生成多碳化合物,是目前CO2电还原中研究最为广泛深入的电极材料. 由于阴、阳离子的特征吸附对Cu电极性能有显著影响,并且不同反应体系中对Cu电极上CO2吸附、活化影响也有所不同,因此导致金属Cu电极上报道的电催化活性、产物种类与选择性等都非常宽泛. 基于此,有必要系统地研究各种反应条件对金属Cu电极电催化CO2还原性能的影响. 作者选择了平均粒径为600 nm的商品化金属Cu颗粒作为电还原CO2的催化剂,研究了不同反应条件包括各种常用电解质溶液、KHCO3的浓度以及H型电解池和流动池. 实验结果表明,浓度为0.5 mol·L -1的KHCO3作为电解质溶液具有较好催化活性和较高的产物分电流密度,流动池可以进一步提高主要产物甲酸盐和CO的分电流密度. 本研究工作从反应条件的角度对CO2还原的电催化转化进行了系统研究,有助于理解电解液和反应器等因素对CO2电还原反应过程的影响规律.  相似文献   

15.
Ever-increasing energy demands due to rapid industrialization and urban population growth have drastically reduced petroleum reserves and increased greenhouse-gas production, and the latter has consequently contributed to climate change and environmental damage. Therefore, it is highly desirable to produce fuels and chemicals from non-petroleum feedstocks and to reduce the atmospheric concentrations of greenhouse gases. One solution has involved using carbon dioxide (CO2), a main greenhouse gas, as a C1 feedstock for producing industrial fuels and chemicals. However, this requires high energy input from reductants or reactants with relatively high free energy (e.g., H2 gas) because CO2 is a highly oxidized, thermodynamically stable form of carbon. H2 can be generated through water photolysis, making it an ideal reductant for hydrogenating CO2 to CO. In situ generation of CO such as this has been developed for various carbonylation reactions that produce high value-added chemicals and avoid deriving CO from fossil fuels. This is beneficial because CO is toxic, and when extracted from fossil fuels it requires tedious separation and transportation. This combination of CO2 and H2 allows for functional molecules to be synthesized as entries into the chemical industry value chain and would generate a carbon footprint much lower than that of conventional petrochemical pathways. Based on this, CO2/H2 carbonylations using homogeneous transition metal-based catalysts have attracted increasing attention. Through this process, alkenes have been converted to alcohols, carboxylic acids, amines, and aldehydes. Heterogeneous catalysis has also provided an innovative approach for the carbonylation of alkenes with CO2/H2. Based on these alkene carbonylations, the scope of CO2/H2 carbonylations has been expanded to include aryl halides, methanol, and methanol derivatives, which give the corresponding aryl aldehyde, acetic acid, and ethanol products. These carbonylations revealed indirect CO2-HCOOH-CO pathways and direct CO2 insertion pathways. The use of this process is ever-increasing and has expanded the scope of CO2 utilization to produce novel, high value-added or bulk chemicals, and has promoted sustainable chemistry. This review summarizes the recent advances in transition-metal-catalyzed carbonylations with CO2/H2 and discusses the perspectives and challenges of further research.  相似文献   

16.
Determining the catalytically active phase in electrochemical CO2 reduction has been challenging. In their work recently published in Nature Communications on July 8, 2020, Zhang et al. studied the phase transition of a tannin-lead(II) complex in electrochemical CO2 reduction and revealed that the in-situ formed hydrocerussite[Pb3(CO3)2(OH)2] is the stable active phase for formate production. This new finding may help settle the debate on the real active site of Pb-based materials for CO2 electroreduction.  相似文献   

17.
本文以氧化石墨烯包覆泡沫镍电极(GO@NF)作为基底,采用水热法在GO@NF基底上原位生长CoO纳米花,同时GO在水热过程中被同步热还原为还原氧化石墨烯(RGO),从而一步制得还原氧化石墨烯包覆泡沫镍负载CoO纳米花电极(CoO/RGO@NF)。使用XRD和SEM对CoO/RGO@NF电极进行表征,发现CoO纳米花均匀生长在泡沫镍三维网络结构上,CoO纳米花为大量针状纳米棒围绕一个中心而成的花状结构,纳米棒的长度约为10 ~ 15 μm,直径约为100 ~ 200 nm。使用循环伏安和线性扫描法测试了CoO/RGO@NF电极电催化CO2的还原性能,在-0.76 V(vs. SHE)电位下,CoO/RGO@NF电极电催化CO2还原的电流效率达到70.9%,产甲酸法拉第效率达到65.2%,甲酸产率为59.8 μmol·h-1·cm-2,且电极可持续稳定电催化还原CO2 4 h,表明CoO/RGO@NF电极对CO2电还原有着优良的催化活性、选择性和稳定性。  相似文献   

18.
Nowadays, more than 85% of the energy is generated by fossil fuels. The excessive utilization of finite fossil fuels has resulted in the crises of energy shortage and global warming caused by greenhouse gas emissions. Researchers have conceived several means for trying to solve these problems, among which the sunlight-driven CO2 reduction is viewed as a sustainable process that utilizes CO2 as the raw material to produce chemical fuels, including CO, formate, and CH4; this method not only realizes the conversion and storage of intermittent solar energy, but also decreases the CO2 concentration in the atmosphere and alleviates global warming. However, photochemical CO2 reduction usually undergoes a sluggish process due to the inertness of CO2. Moreover, the selectivity of the CO2 reduction reaction is also challenged by the hydrogen evolution reaction, which exhibits faster reaction kinetics. In this context, the rational design and synthesis of efficient and selective catalysts for photochemical CO2 reduction are major challenges.  相似文献   

19.
高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.  相似文献   

20.
随着能源短缺和环境问题日益突出, 寻找清洁和可再生能源来替代化石燃料是本世纪科学家面临的最紧迫的任务之一. 为了实现我国“双碳”战略目标, 利用太阳能将二氧化碳(CO2)转化为清洁燃料和化学品是实现社会可持续发展的途径之一. 催化剂是CO2光还原技术的核心组成部分, 其可以吸附气态CO2分子, 在可见光照射下将CO2还原为一氧化碳(CO)、 甲酸(HCOOH)、 甲醇(CH3OH)或甲烷(CH4)等能源小分子. 目前, 新型CO2还原光催化体系的开发取得了很好的进展. 本文综合评述了近年来均相及非均相丰产金属卟啉类催化剂在光催化CO2还原中的研究进展, 并对在金属卟啉均相催化剂作用下, CO2光还原为CO或CH4的反应机理分别进行了介绍, 还讨论了金属卟啉基多孔有机聚合物与卟啉有机金属框架在光催化CO2方面的重要应用. 最后, 对可见光驱动卟啉类金属配合物催化的CO2还原的发展前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号