首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
对二甲苯是重要的石油化工产品之一, 可以通过甲苯甲基化生产. 本文采用“our own-N-layeredintegrated molecular orbital+molecular mechanics”(ONIOM)和密度泛函理论(DFT)结合的方法, 计算了H-ZSM-5催化甲苯与碳酸二甲酯(DMC)和甲醇甲基化反应机理. 考察了反应物吸附和产物脱附. 描述了主要的中间物种和过渡态的结构. 用计算的速率常数来估计甲苯甲基化反应的动力学活性. H-ZSM-5 催化的甲苯与DMC和甲醇甲基化的机理不同. 甲苯和DMC甲基化包括DMC完全解离, 接着甲基化生成二甲苯异构体. 相比而言, 在甲苯甲基化反应中, 甲醇作为甲基化试剂的活性比DMC更好. 甲苯和甲醇甲基化的分步反应路径和联合反应路径的本征活化能相似. 在773 K, 分步反应路径的速率常数比联合反应路径更高. 在甲苯和这两种试剂甲基化的反应中, 生成对二甲苯为动力学优先, 而间二甲苯为能量最低产物. 我们的计算结果和实验观察到的现象一致.  相似文献   

2.
4,4?-二甲基联苯(4,4?-DMBP)是生产高性能聚合物材料的重要前驱体,可以通过4-甲基联苯(4-MBP)甲基化制得.本文采用“our own-N-layered integrated molecular orbital+molecular mechanics”(ONIOM)和密度泛函理论(DFT)方法研究H-ZSM-5分子筛孔内4-MBP和甲醇择形甲基化的反应机理,考虑了分步和协同反应机理.分步机理的活化能低于协同机理.在两种反应机理中,4,4?-DMBP为动力学优先生成产物.过渡态择形的特征也使甲基化更容易生成4,4?-DMBP.在分子筛孔内,4-MBP 异构化生成3-甲基联苯(3-MBP)的反应被抑制.在分子筛外表面,4-MBP异构化生成3-MBP比甲基化反应更有动力学优势,导致4,4?-DMBP选择性降低.对外表面进行改性将会抑制4-MBP异构化反应,并使反应在分子筛孔内进行,因此可以提高4,4?-DMBP的选择性. H-ZSM-5催化择形和非择形反应的计算结果与实验现象一致.  相似文献   

3.
采用密度泛函理论(DFT)和ONIOM方法, 研究了H-ZSM-5分子筛上二甲苯异构化机理. 描述了中间体物种和过渡态的结构. 反应物吸附和产物脱附对二甲苯异构化的反应趋势有重要影响. 反应活化能的计算结果表明, 在H-ZSM-5分子筛延伸的孔道结构中, 异构化反应沿着生成间二甲苯的方向进行. 但是较高的脱附能使生成的间二甲苯滞留在分子筛孔道中,其进一步异构化生成对二甲苯具有动力学优势. 对二甲苯产物在分子筛孔道的酸中心上可选择性生成. 在H-ZSM-5分子筛外表面, 不受延伸孔道结构的静电限制时, 二甲苯异构化生成间二甲苯产物, 其可以很容易从活性位上脱附. 非选择性异构化降低了对二甲苯的选择性. 因此, 对H-ZSM-5分子筛外表面改性能够抑制二甲苯的非选择性异构化, 因此限制了反应在分子筛孔道中进行, 提高了对二甲苯的选择性. 二甲苯异构化相对反应速率常数的计算结果也表明, 在分子筛外表面上, 生成间二甲苯的异构化反应速率较快. 升高反应温度会降低对二甲苯的选择性.  相似文献   

4.
王森  李志凯  秦张峰  董梅  李俊汾  樊卫斌  王建国 《催化学报》2021,42(7):1126-1136,中插21-中插24
甲醇制烯烃(MTO)作为一条由煤、天然气和生物质等含碳资源制备重要有机化学品的非石油路线,近年来备受关注.作为MTO催化剂,分子筛的骨架拓扑结构和酸性质对于其催化活性、反应路径和产物分布等具有重要的影响.H-ZSM-5分子筛是一种典型的MTO反应催化剂,酸位可以分布在MFI拓扑结构的直孔道、正弦孔道和交叉位点处.虽然目...  相似文献   

5.
磷在P-ZSM-5沸石中存在的形态   总被引:1,自引:0,他引:1  
用密度泛函理论和ONIOM (our own N-layer integrated molecular orbital molecular mechanics)方法研究磷改性的ZSM-5沸石中含磷基团的可能存在形态. 计算的反应焓和自由能数据表明P-ZSM-5沸石中以磷进入骨架和在骨架外的形成磷酸根离子对是合理的稳定结构. 而且, 计算结果表明离子对模型F和G更适合在室温下存在, 磷进入骨架的酸性结构C'在高温下更稳定, 而磷进入骨架的结构C对温度变化不敏感. 计算得到的27Al, 31P, 29Si化学位移、酸性的变化趋势和结构参数与相关实验数据吻合.  相似文献   

6.
H-ZSM-5分子筛上苯与乙醇和乙烯烷基化反应的理论研究   总被引:1,自引:0,他引:1  
采用ONIOM2(B3LYP/6-31G(d):UFF)计算方法研究了H-ZSM-5分子筛上苯与乙醇和乙烯烷基化反应历程.选取40T簇模型模拟了H-ZSM-5分子筛位于孔道交叉点的酸性位.从生成能和反应活化能角度分析并比较了苯与乙醇和乙烯烷基化反应机理.结果表明,苯与乙醇的烷基化按照分步机理进行,速控步骤的活化能为170.34 kJ/mol.而乙烯作为烷基化剂与苯反应时同时存在联合机理和分步机理,且二者之间存在一定程度的竞争,其中联合机理的活化能为167.24 kJ/mol,分步机理速控步骤的活化能为155.20 kJ/mol.比较苯与乙醇和乙烯发生烷基化反应的机理可以看出,二者作为烷基化试剂对烷基化反应性能影响不大.  相似文献   

7.
HZSM-5催化甲苯和甲醇烷基化反应机理的密度泛函理论研究   总被引:1,自引:0,他引:1  
对二甲苯(PX)是重要的有机化工原料,主要用于生产对苯二甲酸(PTA)和对苯二甲酸二甲酯(DMT), PTA和 DMT可经缩聚生产化纤、合成树脂和塑料等聚酯产品. PX主要通过甲苯歧化、二甲苯异构化或甲苯与 C9芳烃烷基转移等方式生产.由于三种二甲苯和乙苯的沸点接近,需要经过吸附分离或深冷分离才能得到高纯度的 PX,传统工艺物料循环量大,设备庞大,操作费用高.而通过甲苯和甲醇烷基化反应直接高选择性生成 PX,可大大降低成本,具有非常高的经济效益和研究价值.自1970年代以来,国内外众多科研院所对甲苯和甲醇烷基化催化剂进行了广泛研究,但催化剂选择性和稳定性仍需进一步提高.为了加深对甲苯和甲醇烷基化反应的认识,指导催化剂开发,有必要对甲苯和甲醇烷基化生成二甲苯的反应机理进行深入研究.当前甲苯和甲醇烷基化机理研究主要存在以下问题:(1)计算得到的能量多为电子能,而非自由能;(2)所采用的模型多为团簇模型,使用 ONIOM方法,对长程作用力描述不充分;(3)认为甲苯只有一种吸附状态;(4)没有考虑偕烷基化反应.本文采用周期性模型,通过密度泛函理论研究了 HZSM-5分子筛上甲苯和甲醇烷基化反应机理,通过计算熵得到了反应自由能,并考虑了偕烷基化反应.由于甲基的存在,在甲苯的吸附态中,甲基会伸向孔道的不同方向,因此我们认为甲苯有多种吸附态,而不同的吸附态会生成不同的二甲苯.结果表明,甲苯可以在对位、间位、邻位和偕位上通过协同机理或分步机理发生烷基化反应.在协同机理中,甲苯在对位、间位、邻位和偕位发生烷基化反应的自由能垒分别为167,138,139和183 kJ/mol.在分步机理中,甲醇脱水生成甲氧基的自由能垒为145 kJ/mol,是决速步骤;而甲苯和甲氧基对位、间位、邻位和偕位烷基化的自由能垒分别为127,105,106和114 kJ/mol.两种机理中 PX的生成能垒均比 MX和 OX高,与文献报道的结果不同.文献均认为, PX的生成能垒最低.一方面这可能是由于所采用模型的不同,本文采用周期性模型,能更充分考虑长程作用力的影响;另一方面可能是由于对甲苯吸附态的不同处理,我们认为甲苯有多种吸附态,不同的吸附态会生成不同的二甲苯,而文献均只考虑了一种甲苯吸附态.但是,在实验中, PX选择性最高.这可能是由于:(1) PX在 HZSM-5孔道的扩散速率比 MX和 OX高2–3个数量级;(2)甲苯和甲醇烷基化生成的 MX和OX迅速发生异构化反应生成 PX,异构化反应速率高于甲苯烷基化速率.两种机理中, C8H11+都是重要的中间物种,它可以反馈一个质子给分子筛骨架,生成二甲苯;也可以脱烷基生成甲烷和乙烯等气相产物.研究发现,甲烷的生成是由于 C8H11+物种中的一个 H质子从苯环上的碳原子转移到甲基上的碳原子造成的,计算得到的对位、间位和邻位 C8H11+生成甲烷的能垒分别为136,132和134 kJ/mol.由于十元环孔道的限制, HZSM-5孔道中很难通过甲苯歧化反应生成苯;偕烷基化生成的碳正离子有可能脱烷基生成乙烯和乙烷等产物,进而生成苯.碳正离子脱烷基反应生成了大量气相产物,造成反应液收降低.碳正离子脱烷基反应与甲醇制烯烃过程的烃池机理相一致,因此甲苯和甲醇烷基化反应也遵循烃池机理.  相似文献   

8.
应用分子力学和量子力学联合的ONIOM2(B3LYP/6-31G(d,p):UFF)计算方法研究了H-ZSM-5分子筛上乙烯二聚反应的机理. 用40T簇模型模拟ZSM-5分子筛位于孔道交叉点的酸性位,对乙烯二聚过程的分步反应和协同反应两种机理进行了考察. 对于分步反应机理,乙烯分子首先通过π-氢键作用在酸性位形成稳定的吸附络合物,再进一步发生质子化并生成乙醇盐中间体,随后乙醇盐与第二个乙烯分子发生碳-碳键结合形成丁醇盐产物. 第一步质子化和第二步碳链聚合的活化能分别为152.88和119.45 kJ/mol, 表明乙烯质子化反应为速控步骤. 对于协同反应机理,乙烯质子化、碳-碳键和碳-氧键生成同时进行,生成丁醇盐,反应的活化能为162.30 kJ/mol, 略高于分步反应机理中的速控步骤. 计算结果表明这两种反应机理之间存在相互竞争.  相似文献   

9.
利用密度泛函理论(DFT),基于7T簇模型,在B3LYP/6-31G(d,p)水平上研究了NO分子在H-ZSM-5分子筛孔道中α,β,γ酸性位的吸附.在计算过程中,首先对H-ZSM-5的α,β,γ酸性位进行优化计算,然后对NO分子η1-N和η1-O两种吸附模式的红外光谱和吸附能进行计算.计算结果表明,NO分子以η1-N模式吸附于H-ZSM-5分子筛酸性位上,不同酸性位对NO分子的吸附能力排序为:α酸性位>β酸性位>γ酸性位.此外,H-ZSM-5分子筛直型孔道更有利于NO分子的吸附和扩散,因而可更有效地促进NO分子催化分解反应的进行.  相似文献   

10.
芳烃是一类重要的有机化工基础原料,通常采用传统的石油路线生产芳烃,包括催化裂化和催化重整等工艺.由于石油资源的紧缺,以可再生资源为原料生产芳烃工艺的发展具有十分重要的意义.甲醇作为一种重要的基础原料,可来源于煤、天然气和生物质等,因此,甲醇制芳烃工艺(MTA)的研究受到日益关注.ZSM-5分子筛具有较大的比表面积、可调节的酸性、优良的择形选择性和很高的水热稳定性,因而在甲醇芳构化中展现出良好的催化性能.研究发现,甲醇转化率和产物分布与ZSM-5分子筛的酸性和多孔性等密切相关.本文通过调控模板剂与水的比例和晶化时间,采用水热法制备了一系列不同晶粒度H-ZSM-5分子筛催化剂,通过X射线衍射(XRD)、扫描电镜(SEM)、N2物理吸附脱附(BET)和X射线荧光光谱等技术对所得分子筛的理化性质、骨架结构和形貌进行了表征;采用吡啶红外光谱和NH3程序升温脱附技术对其酸性进行了分析,使用热重(TG)技术对反应后催化剂的积碳含量进行了分析,并将所制备的H-ZSM-5分子筛催化剂分别应用于MTA反应,系统性地探究分子筛晶粒度对其理化性质和MTA催化性能的影响.XRD结果表明,所合成的五种样品均具有典型的ZSM-5分子筛特征衍射峰且无杂晶,且具有不同的晶粒度,分别为4.0±0.3,1.2±0.2 μm,614.1±31.9、391.9±32.4和99.1±7.0 nm.N2物理吸附脱附曲线可以发现,晶粒度为99.1±7.0 nm的ZSM-5分子筛展现出典型的Ⅰ型和Ⅳ型物理吸附曲线且在较高的相对压力(P/Po=0.8-1.0)处有一个明显的H4型迟滞环,表明此分子筛具有介孔和大孔结构;BJH吸附孔径分布图表明,这些介孔主要分布在2-7和20-50 nm范围内;同时各样品的比表面积和孔体积随着其晶粒度的减小而增大.结果还表明五种不同晶粒度的ZSM-5分子筛具有相似的SiO2/Al2O3摩尔比和酸性质.MTA反应结果表明,随着催化剂晶粒度的降低,甲醇的平均转化率,芳烃选择性和BTX选择性有所提高,在300 min时晶粒度较大的三个催化剂上,甲醇转化率迅速降至90%,而晶粒度较小的两个催化剂上,甲醇转化率始终维持在95%以上,其中晶粒度为99.1±7.0 nm的样品上芳烃选择性最高(平均42%以上),BTX选择性达37%.对失活催化剂积碳含量分析,随着催化剂晶粒度的降低,积碳量降低.晶粒度较低的纳米分子筛催化剂具有更短的孔道,更高效的扩散性能,更高的比表面积和独特的梯级孔结构,因而在甲醇芳构化反应中展现出更长的寿命,更高的活性和更低的积碳量,在甲醇制芳烃工业化生产中具有巨大潜力.  相似文献   

11.
在H-ZSM-5沸石上甲醇转化为汽油的初始产物分布姜玄珍(浙江大学化学系,杭州310027)R.F.Howe(新南威尔士大学物理化学系,澳大利亚)关键词H-ZSM-5沸石,甲醇转化汽油,产物分布以氢型ZSM-5沸石作催化剂转化甲醇为汽油(MTG),在...  相似文献   

12.
以HF改性的Pt/ZSM-5为催化剂,研究了其在苯和甲醇烷基化反应的应用,并用XRD、NH3-TPD、BET等表征方法研究了改性前后催化剂酸性和孔结构变化。 结果表明,经HF改性后,Pt/ZSM-5催化剂的酸性增强、酸量增加,苯和甲醇烷基化反应性能明显提升。 3%HF-0.2%Pt/ZSM-5催化剂催化苯和甲醇烷基化反应时,甲苯和二甲苯选择性达到92.20%。 但是,HF负载量大于6%时,HF脱除的部分骨架硅和骨架铝会堆积在催化剂孔道内部,限制了反应物和产物的扩散,造成其催化性能下降。 通过计算得到了HF改性的Pt/ZSM-5催化剂上苯和甲醇烷基化反应的活化能为118 kJ/mol。  相似文献   

13.
左士颖  周丹红  任珏  王凤娇 《催化学报》2012,33(8):1367-1373
基于76T簇模型,采用量子力学和分子力学联合的ONIOM2(B3LYP/6-31G(d,p):UFF)方法研究了H-ZSM-5分子筛上环己烯芳构化反应历程.结果表明,环己烯首先吸附在分子筛酸性位上,与酸性质子共同脱除一个H2分子后,在分子筛骨架氧上生成烷氧配合物中间体;然后再脱质子得到环己二烯,同时酸性位复原;再经历脱氢和脱质子历程,最后得到产物苯,并吸附在复原的分子筛酸性位上.计算得到脱氢的活化能依次为279.64和260.21kJ/mol,脱质子的活化能依次为74.64和59.14kJ/mol.所有脱氢反应都是吸热过程,生成表面烷氧活性中间体,随后的脱质子反应能垒较低,而且是放热过程.此外,比较了环己烯在分子筛酸性位上的三个竞争反应,即脱氢、质子化和氢交换反应的活化能垒,证明环己烯优先发生脱氢反应.  相似文献   

14.
 考察了 H-ZSM-5 和 Zn/H-ZSM-5 催化剂的二甲醚芳构化性能. 结果表明, H-ZSM-5 分子筛催化剂酸性的增强和酸中心的增多有利于二甲醚芳构化. 当在 H-ZSM-5 催化剂中加入 2% Zn 时, 在 360 oC 下反应时总芳烃收率从 50.0% 增加至 66.2%, C8 芳烃收率从 28.6% 增加到 39.0%. 反应温度升高到 480 oC 时, 总芳烃收率增加至 78.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号