首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

4.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brinzolamide(Brz-LPNs) for achieving sustained drug release,improving drug corneal permeation and enhancing drug topical therapeutic effect.The structure of Brz-LPNs was composed of poly(lactic-co-glycolic) acid(PLGA) nanocore which encapsulated Brz(Brz-NPs) and lipid shell around the core.Brz-LPNs were prepared by a modified thin-film dispersion method.With the parameters optimization of Brz-LPNs,optimal Brz-LPNs showed an average particle size of151.23±1.64 nm with a high encapsulation efficiency(EE) of 86.7%±2.28%.The core-shell structure of Brz-LPNs were confirmed by transmission electronic microscopy(TEM).Fourier transformed infrared spectra(FTIR) analysis proved that Brz was successfully entrapped into Brz-LPNs.Brz-LPNs exhibited obvious sustained release of Brz,compared with AZOPT^■ and Brz-LPs.Furthermore,the corneal accumulative permeability of Brz-LPNs significantly increased compared to the commercial available formulation(AZOPT^■) in vitro.Moreover,Brz-LPNs(1 mg/mL Brz) showed a more sustained and effective intraocular pressure(IOP) reduction than Brz-LPs(1 mg/mL) and AZOPT^■(10 mg/mL Brz) in vivo.In conclusion,Brz-LPNs,as promising ocular drug delivery systems,are well worth developing in the future for glaucoma treatment.  相似文献   

11.
Developing novel and efficient catalysts is a significant way to break the bottleneck of low separation and transfer efficiency of charge carriers in pristine photocatalysts. Here, two fresh photocatalysts, g-C3N4@Ni3Se4 and g-C3N4@CoSe2 hybrids, are first synthesized by anchoring Ni3Se4 and CoSe2 nanoparticles on the surface of well-dispersed g-C3N4 nanosheets. The resulting materials show excellent performance for photocatalytic in situ hydrogen generation. Pristine g-C3N4 has poor photocatalytic hydrogen evolution activity (about 1.9 μmol·h-1) because of the rapid recombination of electron-hole pairs. However, the hydrogen generation activity is well improved after growing Ni3Se4 and CoSe2 on the surface of g-C3N4, owing to the unique effect of these selenides in accelerating the separation and migration of charge carriers. The hydrogen production activities of G-C3N4@Ni3Se4 and g-C3N4@CoSe2 are about 16.4 μmol·h-1 and 25.6 μmol·h-1, which are 8-fold and 13-fold that of pristine g-C3N4, respectively. In detail, coupling Ni3Se4 and CoSe2 with g-C3N4 greatly improves the light absorbance density and extends the light response region. The photoluminescence intensity of the photoexcited Eosin Y dye in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is weaker than that in the presence of pure g-C3N4. On the other hand, the upper limit of the electron-transfer rate constants in the presence of g-C3N4@Ni3Se4 and g-C3N4@CoSe2 is greater than that in the presence of pure g-C3N4. Among the g-C3N4@Ni3Se4@FTO, g-C3N4@CoSe2@FTO, and g-C3N4@FTO electrodes, the g-C3N4@FTO electrode has the lowest photocurrent density and the highest electrochemical impedance, implying that the introduction of CoSe2 and Ni3Se4 onto the surface of g-C3N4 enhances the separation and transfer efficiency of photogenerated charge carriers. In other words, the formation of two star metals selenide based on g-C3N4 can efficiently inhibit the recombination of photogenerated charge carriers and accelerate photocatalytic water splitting to generate H2. Meanwhile, the right shift of the absorption band edge effectively reduces the transition threshold of the photoexcited electrons from the valence band to the conduction band. In addition, the more negative zeta potential for the g-C3N4@Ni3Se4 and g-C3N4@CoSe2 catalysts as compared with that for pure g-C3N4 leads to a notable enhancement in the adsorption of protons by the sample surface. Moreover, the results of density functional theory calculations indicate that the hydrogen adsorption energy of the N sites in g-C3N4 is -0.22 eV; further, the hydrogen atoms are preferentially adsorbed at the bridge site of two selenium atoms to form a Se―H―Se bond, and the adsorption energy is 1.53 eV. In-depth characterization has been carried out by transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, transient photocurrent measurements, and Fourier transform infrared spectroscopy; the results of these experiments are in good agreement with one another.  相似文献   

12.
Layered graphitic carbon nitride (g-C3N4) is a typical polymeric semiconductor with an sp2 π-conjugated system having great potential in energy conversion, environmental purification, materials science, etc., owing to its unique physicochemical and electrical properties. However, bulk g-C3N4 obtained by calcination suffers from a low specific surface area, rapid charge carrier recombination, and poor dispersion in aqueous solutions, which limit its practical applications. Controlling the size of g-C3N4 (e.g., preparing g-C3N4 nanosheets) can effectively solve the above problems. Compared with the bulk material, g-C3N4 nanosheets have a larger specific surface area, richer active sites, and a larger band gap due to the quantum confinement effect. As g-C3N4 has a layered structure with strong in-plane C-N covalent bonds and weak van der Waals forces between the layers, g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4. Alternatively, g-C3N4 nanosheets can otherwise be obtained through the anisotropic assembly of organic precursors. Nevertheless, some of these methods have various limitations, such as high energy consumption, are time consuming, and have low yield. Accordingly, developing green and cost-effective exfoliation and preparation strategies for g-C3N4 nanosheets is necessary. Herein, the research progress of the exfoliation and preparation strategies (including the thermal oxidation etching process, the ultrasound-assisted route, the chemical exfoliation, the mechanical method, and the template method) for two-dimensional C3N4 nanosheets are introduced. Their features are systematically analyzed and the perspectives and challenges in the preparation of g-C3N4 nanosheets are discussed. This study emphasizes the following: (1) The preparation method of g-C3N4 nanosheets should be properly selected according to the practical application needs. Additionally, various strategies (such as chemical method and ultrasonic method) can be combined to exfoliate nanosheets from bulk g-C3N4; (2) More reasonable nano- or even subnanostructured g-C3N4 nanosheets should be continuously explored; (3) Novel modification strategies, such as defective engineering, heterojunction construction, and surface functional group regulation, should be introduced to improve the reactivity and selectivity of the g-C3N4 nanosheets; (4) The application of in situ characterization techniques (such as in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron spin resonance (ESR) spectroscopy, and Raman spectroscopy) should also be strengthened to monitor the detailed catalytic process and investigate the g-C3N4 nanosheet structure-efficiency relationship. (5) To gain a deeper understanding of the relationship between the macroscopic properties and the microscopic structure, the combination of theoretical calculations and experimental results should be strengthened, which will be beneficial for exploiting high-quality g-C3N4 nanosheets.   相似文献   

13.
从层状化合物获得的纳米片是一类新型纳米结构材料,这种二维各向异性的纳米甚至亚纳米级的材料具有独特的物理化学性能,其中最好的一个例证就是从石墨烯C3N4到石墨烯C3N4纳米片的转变。通过高温氧化热刻蚀方法将体相g-C3N4剥离成g-C3N4纳米片,应用于染料敏化可见光分解水产氢,表现出了较体相g-C3N4高于2.6倍的产氢速率。通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、Brunauer-Emmett-Teller(BET)、荧光光谱和光电化学等表征研究了g-C3N4纳米片的结构及曙红(EY)和g-C3N4纳米片之间的电子迁移过程。热剥离后的g-C3N4纳米片具有较高的比表面积,不仅可以更为有效地吸附染料分子,还因其量子限域效应大大增强了光生电荷的分离效率和电子转移效率,改善了电子沿平面方向的传输能力以及光生载流子的寿命,从而显著提高g-C3N4纳米片的光催化产氢活性。  相似文献   

14.
采用第一性原理密度泛函理论结合周期性平板模型模拟研究了Pt4团簇吸附单层石墨相氮化碳(g-C3N4)的几何结构和电子性质,以及氧气在其表面上的吸附行为。同时,对比分析了氧气在纯净的石墨相氮化碳和Pt4团簇上的吸附行为。计算结果表明, Pt4团簇吸附在3-s-三嗪环石墨相氮化碳表面,并与四个边缘氮原子成键,形成两个六元环时为最稳定构型。Pt4团簇倾向于吸附在三嗪环石墨相氮化碳的空位并与邻近三个氮原子成键。由于Pt与N原子较强的杂化作用,以及金属与底物之间较多电子转移增强了Pt4团簇吸附g-C3N4的稳定性。另外,对比分析了氧气在纯净的g-C3N4和金属吸附的g-C3N4上吸附行为,发现金属原子的加入促进了电子转移,同时拉长了O―O键长。Pt4吸附3-s-三嗪环g-C3N4比Pt4吸附三嗪环g-C3N4表现出微弱的优势,表现出明显的基底扭曲以及较大的吸附能。这些结果表明,化学吸附通过调节电子结构和表面性质增强催化性能的较好方法。  相似文献   

15.
As a unique two-dimensional material, graphitic carbon nitride (g-C3N4) has received significant attention for its particular electronic structure and chemical performance. Its instinctive defect can provide a stable anchoring site for metals, potentially improving the surface reactivity. Ni-based catalysts are economical but their activity for CO2 methanation is lower than that of noble metal catalysts. Ni nanoparticles (NPs) supported on a substrate can further enhance the stability and activity of catalysts. Based on the principles of strong metal-support interaction (SMSI) and the synergistic effect on an alloy, MNi12/g-C3N4 composites as novel catalysts are expected to improve stability and catalytic performance of Ni-based catalysts. The configurations are established with core-shell structures of MNi12 (M = Fe, Co, Cu, Zn) nanoparticles (NPs) supported on g-C3N4 in this work. In the CO2 methanation reaction, the reactivity of CO on slab (ECO) is a critical factor, which is relative to the catalytic activity. Thus, the catalytic reactivity of these complexes via CO adsorption were explored using density functional theory (DFT). The values of cohesive energy (Ecoh) for MNi12 NPs range from -39.90 eV to -34.82 eV, suggesting that the formation of these NPs is favored as per thermodynamics, and Ecoh and partial density of state (PDOS) reveal that the central M atom with the less filled d-shell interacts more strongly with surface Ni atoms. Therefore, ZnNi12 is the most unstable structure among all the studied alloy, and the synergistic effect is also the weakest among them. When MNi12 NPs are supported on the g-C3N4 substrate, the binding energies (Eb) vary from -9.40 eV to -8.39 eV, indicating that g-C3N4 is indeed a good material for stabilizing these NPs. The PDOS analysis of pure g-C3N4 suggests the sp2 dangling bonds of N atoms in g-C3N4 can stabilize these transition metal NPs. Furthermore, the results of CO adsorbed on MNi12 NPs and MNi12/g-C3N4 composites show that ECO and dCO reduced with the introduction of g-C3N4. According to the results of the analysis of the Hirshfeld charges and electrostatic potential (ESP), the reason is that CO obtains less electrons from MNi12 NPs after deposition on the g-C3N4 substrate, which lowers the reactivity of CO on catalysts. Additionally, the deformation charge density is analyzed to investigate the interaction between the NPs and g-C3N4. With the introduction of g-C3N4, charge redistribution indicates the strong metal-support interaction, which further reduces the CO adsorption energy. In summary, MNi12 supported on g-C3N4 exhibit not only high stability but also tunable reactivity in CO2 methanation. These changes are beneficial for CO2 methanation reaction.  相似文献   

16.
刘优昌  王亮 《燃料化学学报》2018,46(9):1146-1152
以三聚氰胺作为合成g-C_3N_4纳米片的前躯体,以Bi(NO3)3·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C_3N_4/Bi OBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C_3N_4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UVvis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C_3N_4/BiOBr光催化降解罗丹明B(Rh B)的效率高于单体g-C_3N_4和BiOBr,并对g-C_3N_4/BiOBr增强可见光催化RhB机理进行解释。  相似文献   

17.
热处理氧化石墨相氮化碳(g-C_3N_4)材料产生氮缺陷、提升其光催化制氢性能的研究备受关注,但其N空位浓度高且不可控、一定程度破坏g-C_3N_4晶体结构,降低g-C_3N_4的结晶度,导致光生电子-空穴对复合率高,致使其光催化制氢效率较低。基于上述问题,本研究以二氰二胺为前驱体制备了g-C_3N_4,与不同含量的尿素混合,在空气中加热快速热处理,通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)等测试手段,对其物相组成、微观形貌、光学吸收等进行了表征,在可见光条件下对样品进行了光催化制氢性能测试,研究了尿素的加入对热处理后g-C_3N_4材料的N空位浓度、结晶度及光催化制氢性能的影响。研究表明,尿素的加入降低了N空位的浓度,且提升了其结晶度。在优化的尿素添加量下,g-C_3N_4的可见光光催化制氢速率为6.5μmol·h-1,是没有添加尿素处理的样品的3倍。该研究结果表明,利用尿素原位分解产生的NH_3,可以抑制g-C_3N_4热处理过程中氮原子的氧化程度、实现调控N空位浓度,同时提高了结晶度,最终提升了其光催化制氢性能。  相似文献   

18.
以1-丁基-3-甲基咪唑溴离子液体([Bmim]Br)、磷钨酸(H_3PW_(12)O_(40))和g-C_3N_4为原料,采用原位沉淀法合成了负载型[Bmim]_3PW_(12)O_(40)/g-C_3N_4催化剂(BPWO/g-C_3N_4)。通过XRD、FT-IR、UV-vis、氮气吸附、TEM和XPS等手段对催化剂的形貌和结构进行了表征,并以二苯并噻吩(DBT)的正庚烷溶液为模拟油、过氧化氢为氧化剂,考察了各组分负载量、催化剂用量、氧/硫物质的量比(O/S)和反应温度变量等对其氧化脱硫效果的影响。结果表明,BPWO/g-C_3N_4具有Keggin型杂多阴离子结构特征,BPWO (20%)/g-C_3N_4催化剂具有最优的对DBT的氧化脱硫性能,在50℃、O/S物质的量比为6.0的条件下反应180 min,可以完全氧化浓度为800μg/g的含DBT模拟油。同时,该BPWO/g-C_3N_4催化剂具有良好的重复使用性能,循环使用八次后其对DBT的氧化活性没有明显降低。  相似文献   

19.
采用水热法合成了NiWO_4纳米粒子,然后通过混合煅烧法成功地制备了负载型催化剂NiWO_4/g-C_3N_4。采用XRD、FT-IR、EDS、SEM、BET和XPS表征了NiWO_4/g-C_3N_4的形貌和结构特征。以NiWO_4/g-C_3N_4为催化剂,过氧化氢为氧化剂,1-丁基-3-甲基咪唑四氟硼酸盐离子液体([BMIM]BF4)为萃取剂。考察了催化剂的负载量,过氧化氢、离子液体和催化剂使用量,反应温度,反应时间,不同种类的含硫化合物对脱硫效果的影响。结果表明,在5 m L模拟油,0.2 m L过氧化氢,1.0 m L的[BMIM]BF4,0.03 g的NiWO_4/g-C_3N_4,反应温度为80℃,反应时间为140 min的最佳的反应条件下,脱硫率可以达到97.35%。实验表明,NiWO_4/g-C_3N_4具有很好的催化稳定性,催化剂重复使用五次后催化活性并没有明显地降低。  相似文献   

20.
葛飞跃  黄树全  颜佳  景立权  陈烽  谢萌  徐远国  许晖  李华明 《催化学报》2021,42(3):450-459,中插31-中插34
光催化技术是一种绿色的化学技术,它可以利用取之不尽的太阳能来降解有毒污染物或者分解水产生氢气等.毋庸置疑,这项技术的核心是半导体光催化剂,在太阳光的照射下,半导体产生电子-空穴对,分别迁移至表面参与氧化还原反应.然而,半导体光催化剂中电子和空穴易快速复合以及其对太阳能中占主导的可见光利用率较低阻碍了其在实际中的应用.因...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号