首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of MnC2O4 nanoparticles on the thermal decomposition of double-base propellant composed of nitrocellulose (NC) and triethylene glycol dinitrate (TEGDN) has been investigated by TG/DSC?CMS?CFTIR coupling technique. The results show that the decomposition of TEGDN/NC propellant has two stages, the first stage is the volatility and decomposition of TEGDN, the second is the decomposition of NC. The addition of MnC2O4 nanoparticles gets the onset temperature of first stage higher, and makes the activation energy of decomposition of TEGDN grow by about 20?C30?kJ/mol. The catalytic also accelerates the total weight loss, and makes the peak temperatures of DSC curves higher. The activation energy of the second stage has a decrease of 20?C40?kJ/mol. MS and FTIR analysis show that the catalyst gets the gas products of macromolecular significantly reduce, while small molecules increase significantly. It also results in the decrease of H2O, N2O, and NO2, and the increase of NO and HCN. Above all, the catalytic improves the thermal stability of TEGDN/NC propellant, make it more safety in storage, and make the decomposition easier and more thorough in main reaction zone.  相似文献   

2.
The reactions of ethylene glycol with manganese oxalates MnC2O4 · 2 H2O and MnC2O4 · 3H2O on heating in air were studied. At temperature below 100°C, ethylene glycol was found to displace water from oxalates to give a new solvate compound according to the reaction MnC2O4 · nH2O + HOCH2CH2OH = MnC2O4(HOCH2CH2OH) + nH2O↑. The crystals of the solvates retain the morphology of the initial oxalates, which is then inherited by the products of their thermolysis. Thus, thermolysis of MnC2O4 · 3H2O and MnC2O4(HOCH2CH2OH) having quasi-unidimensional structure gave Mn3O4 and Mn2O3 nanowhiskers in air and MnO in an inert gas environment. Heating of MnC2O4 · nH2O in ethylene glycol at temperatures above 100°C results in anhydrous manganese oxalate.  相似文献   

3.
Crystals of the ternary La11(MnC6)3 and new quaternary carbide La14Sn(MnC6)3 phases were grown from La/Ni eutectic flux and their structures were determined by means of X-ray single crystal diffraction. La11(MnC6)3 is a new superstructure variant of La3.67MnC6 (previously reported disordered subcell: P63/m; a0=8.806 Å; c0=5.329 Å, Z=2). The superstructure (R3¯; a=√3a0=15.2649(9) Å; c=3c0=16.013(1) Å, Z=6; R1=0.022) is realized by complete ordering of the La chains within the columns of face-sharing carbon octahedra, with alternating La-La distances leading to R-centering and enlargement of the unit cell. The structure of the quaternary carbide La14Sn(MnC6)3 (P6¯; a=8.756(1) Å; c=10.483(2) Å, Z=1; R1=0.026) is closely related to that of La11(MnC6)3 with part of the MnC6 units replaced by Sn atoms. The structure and precise composition of La14Sn(MnC6)3 can be derived from that of La11(MnC6)3 by taking into account the extent of this substitution and variation in lanthanum siting in the chain of carbon octahedra. Band structure calculations indicate both phases are metallic; the La11(MnC6)3 phase is stabilized by the ordering of La atoms which induces a pseudogap at EF.  相似文献   

4.
The kinetics of selective CO oxidation (or individual CO or H2 oxidation) over ruthenium catalysts are considerably as affected by the heat released by the reaction and specifics of the interaction of ruthenium with feed oxygen. In a reactor with reduced heat removal (a quartz reactor) under loads of ∼701 gCat−1 h−1 and reagent percentages of ∼1 vol % CO, ∼1 vol % O2, ∼60 vol % H2, and N2 to the balance, the reaction can be carried out in the catalyst surface ignition regime. When catalyst temperatures are below ∼200°C, feed oxygen deactivates metallic ruthenium, the degree of deactivation being a function of temperature and treatment time. Accordingly, depending on the parameters of the experiment and the properties of the ruthenium catalyst, various scenarios of the behavior of the catalyst in selective CO oxidation are realized, including both steady and transition states: in a non-isothermal regime, a slow deactivation of the catalyst accompanied by a travel of the reaction zone through the catalyst bed along the reagent flow; activation of the catalyst; or the oscillation regime. The results of this study demonstrate that, for a strongly exothermic reaction (selective CO oxidation, or CO, or H2 oxidation) occurring inside the catalyst bed, the specifics of the entrance of the reaction into the surface ignition regime and the effects of feed components on the catalyst activity should be taken into account.  相似文献   

5.
Summary Catalytic wet air oxidation (CWAO) of oleic acid was carried out in a batch reactor on platinum supported ceria catalyst (Pt/CeO2). Oleic acid is a water insoluble linear unsaturated fatty acid of 18 carbon atoms. To increase the homogeneity of the solution by saponification, the influence of NaOH additions in oleic acid CWAO mechanism and catalyst performances have been investigated. The oxidation of such molecule occurs by two types of mechanisms: successive carboxy-decarboxylation which leads essentially to CO2and/or C-C bonds splitting in the alkyl chain inducing a high formation of acetic acid. With or without NaOH, the 5%Pt/CeO2catalyst is active in the conversion of oleic acid and selective to carbon dioxide. In alkaline medium, oleic acid is initially saponified which increases the solubility of the reactant before it to be oxidized. Finally the oxidation is slightly delayed by the presence of NaOH. The catalyst characterizations show no significant difference before and after reaction.</o:p>  相似文献   

6.
The chain transfer reaction by hydrogen in the initial stage of propene polymerization with MgCl2-supported Ziegler catalyst was studied by means of the stopped-flow polymerization. The yield and molecular weight of polypropene produced in the initial stage were not affected by hydrogen. Thus, the method was successfully applied to find the region in which hydrogen does not act as a chain transfer reagent. On the other hand, a chain transfer reaction proceeded in the initial stage of polymerization by using Zn(C2H5)2. Furthermore, when the catalyst was treated with Al(C2H5)3 before polymerization, the molecular weight of the produced polymer was decreased by using hydrogen, indicating that it acted as a chain transfer agent for the catalyst modified by pre-treatment.  相似文献   

7.
钯配合物催化烯烃氧化合成酮类物质的研究进展   总被引:1,自引:0,他引:1  
本文系统地评述了钯配合物催化烯烃氧化合成酮类物质的研究进展。综述了改进Wacker 类催化剂催化活性的几种方法。总结了烯烃氧化合成酮类物质反应的几种典型催化体系及其作用机理。着重介绍了Pd (Ⅱ) HPA (杂多酸)、Pd (Ⅱ) FePc (酞菁铁)、Pd (Ⅱ) HQ (氢醌) FePc、Pd (Ⅱ) HQHPA、Pd (Ⅱ) CuSO4 HPA 等Wacker 类催化体系在烯烃氧化合成酮类物质中的应用; 对Pd (Ⅱ) LCoNO2、PdCl2(MeCN)2 CuCl、Pd (OAc)2 吡啶、氟两相等非Wacker 类催化体系在烯烃氧化合成酮类物质中的应用也作了讨论。  相似文献   

8.
Selective CO oxidation in a mixture simulating the methanol steam reforming product with an air admixture was studied over Ru/Al2O3 catalysts in a quasi-adiabatic reactor. On-line monitoring of the gas temperature in the catalyst bed and of the residual CO concentration at different reaction conditions made it possible to observe the ignition and quenching of the catalyst surface, including transitional regimes. A sharp decrease in the residual CO concentration takes place when the reaction passes to the ignition regime. The evolution of the temperature distribution in the catalyst bed in the ignition regime and the specific features of the steady-state and transitional regimes are considered, including the effect of the sample history. In selective CO oxidation and in H2 oxidation in the absence of CO, the catalyst is deactivated slowly because of ruthenium oxidation. In both reactions, the deactivated catalyst can be reactivated by short-term treatment with hydrogen. A 0.1% Ru/Al2O3 catalyst is suggested. In the surface ignition regime, this catalyst can reduce the residual CO concentration from 0.8 vol % to 10–15 ppm at O2/CO = 1 even in the presence of H2O and CO2 (up to ~20 vol %) at a volumetric flow rate of ~100 1 (g Cat)?1 h?1, which is one magnitude higher than the flow rates reported for this process in the literature.  相似文献   

9.
In this study, tetracarboxylic manganese phthalocyanine coated nano-zinc oxide (MnC4Pc-ZnO) composite material was prepared by in-situ growth method and modified with indium tin oxide (ITO) glass electrode to construct a photoelectrochemical (PEC) sensor. A PEC sensor for the determination of amlodipine besylate (AB) was developed for the first time based on the principle of precipitation reaction between heavy metal ions and dihydropyridine and the recombination suppression effect of the material. The morphology and optical properties of the MnC4Pc-ZnO composites were characterized by scanning electron microscopy (SEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). Chronoamperometry (i-t) and electrochemical impedance spectroscopy (EIS) were used to study the PEC behavior of ITO electrodes modified by MnC4Pc-ZnO composite material. The study found that the MnC4Pc-ZnO composite material has a good photocurrent response to AB, and there was a good linear relationship between the concentration range of 75 nM-250 μM, the linear equation was I(μA)=−5.2×10−8×lgC+3.2×10−8 (r=0.9947), a limit of detection (LOD) of 20 nM. In addition, MnC4Pc-ZnO/ITO also has good selectivity and stability. The PEC sensor detects amlodipine besylate tablets, amlodipine besylate dispersible tablets, and biological samples, with standard addition recovery rates of 96.11 % and 103.96 %, respectively. The determination result has good accuracy, and the PEC sensor provides a new method for detecting AB.  相似文献   

10.
Nitric acid is manufactured by oxidizing ammonia where the ammonia comes from an energy demanding and non-eco-friendly, Haber–Bosch process. Electrochemical oxidation of N2 to nitric acid using renewable electricity could be a promising alternative to bypass the ammonia route. In this work, we discuss the plausible reaction mechanisms of electrochemical N2 oxidation (N2OR) at the molecular level and its competition with the parasitic oxygen evolution reaction (OER). We suggest the design strategies for N2 oxidation electro-catalysts by first comparing the performance of two catalysts – TiO2(110) (poor OER catalyst) and IrO2(110) (good OER catalyst), towards dinitrogen oxidation and then establish trends/scaling relations to correlate OER and N2OR activities. The challenges associated with electrochemical N2OR are highlighted.

Electrochemical oxidation of N2 to HNO3 (N2OR) is explored in conjunction with parasitic oxygen evolution reaction (OER) on a poor and a good OER catalyst, TiO2 and IrO2. We develop scaling relations to correlate OER and N2OR activities on oxides.  相似文献   

11.
Three recurring hypotheses are often used to explain the effect of non‐thermal plasmas (NTPs) on NTP catalytic hybrid reactions; namely, modification or heating of the catalyst or creation of new reaction pathways by plasma‐produced species. NTP‐assisted methane (CH4) oxidation over Pd/Al2O3 was investigated by direct monitoring of the X‐ray absorption fine structure of the catalyst, coupled with end‐of‐pipe mass spectrometry. This in situ study revealed that the catalyst did not undergo any significant structural changes under NTP conditions. However, the NTP did lead to an increase in the temperature of the Pd nanoparticles; although this temperature rise was insufficient to activate the thermal CH4 oxidation reaction. The contribution of a lower activation barrier alternative reaction pathway involving the formation of CH3(g) from electron impact reactions is proposed.  相似文献   

12.
It is shown that at relatively low temperatures the rate of oxidation of methane by nitrous oxide over the catalyst V2O5/SiO2 exceeds the rate of oxidation of methane by oxygen, whereas at higher temperatures the opposite relation is observed between the comparative rates of the reactions. This effect is explained on the basis of a heterogeneous chain mechanism for the oxidation of methane.  相似文献   

13.
Possible mechanisms are suggested for propane oxidation on Pt/TiO2/Al2O3 and Pt/CeO2/Al2O3 catalysts in the cyclic reactant supply mode. As compared to the steady-state process, the process conducted as catalyst oxidation-reduction cycles results in a very different product composition: it is more selective toward partial oxidation products and yields much smaller amounts of complete oxidation products. It is established by isothermal and temperature-programmed oxygen desorption that, under the reaction conditions examined, the oxygen desorbed from the catalyst surface into the gas phase makes a negligible contribution to propane oxidation. It is proved by XPS that propane oxidation is due to the chemically bound oxygen of the catalyst. The hypothetical mechanism of the process includes propane activation on Pt followed by the transfer of the activated species to the oxygen-storing component (TiO2 or CeO2), where the intermediates are oxidized by chemically bound oxygen.  相似文献   

14.
The product composition and reaction kinetics are reported for 2,3,6-trimethylphenol (TMP) oxidation with hydrogen peroxide in acetonitrile catalyzed by a Ti-monosubstituted polyoxometalate (Ti-POM) with a Keggin structure ([Bu4N]4[PTi(OMe)W11O39]) and for the stoichiometric reaction between TMP and the peroxo complex [Bu4N]4[HPTi(O)2W11O39] (I). The main products of the stoichiometric reaction are 2,3,5-trimethyl-1,4-benzoquinone (TMBQ) and 2,2′,3,3′,6,6′-hexamethyl-4,4′-biphenol (BP). The TMBQ yield increases as the TMP/I molar ratio is decreased. The catalytic reaction is first-order with respect to H2O2 and the catalyst and has a variable order (1-0) with respect to TMP. The rate of the reaction increases as the water concentration in the reaction mixture is raised. The stoichiometric reaction is first-order with respect to peroxo complex I and has a variable order (1-0) with respect to TMP. There is no kinetic isotope effect for this reaction (k ArOH/k ArOD = 1). A TMP oxidation mechanism is suggested, which includes the coordination of a TMP molecule and peroxide on a Ti site of the catalyst with the formation of a reactive intermediate. The one-electron oxidation of TMP in this intermediate yields a phenoxyl radical. The subsequent conversions of these ArO° radicals yield the reaction products.  相似文献   

15.
A simple and efficient catalytic system [BBIM]Br–SnCl2 for the oxidation of benzyl alcohol using hydrogen peroxide as the oxidant has been developed. Reaction conditions such as the catalyst dose, the solvents, reaction temperature, reaction time, and the amount of hydrogen peroxide were investigated. The optimum reaction conditions identified were 0.11 g of catalyst, no solvent, 65°C, 15 min, and 2 mmol of hydrogen peroxide. Oxidation of various alcohols was also investigated under the optimized conditions. The catalyst [BBIM]Br–SnCl2 can be easily recovered and reused for six reaction runs without significant loss of catalytic activity, because the Sn species of the catalyst can be coordinated with the imidazole ring of the ionic liquid. The reused catalyst was further characterized by Fourier transform infrared spectroscopy to evaluate its chemical properties. The results proved that the [BBIM]Br–SnCl2 catalyst was stable and reusable for the oxidation reactions. A possible mechanism for the oxidation of benzyl alcohol to benzaldehyde is proposed.  相似文献   

16.
The effect of the nature of the chelate center in NiII complexes on their catalytic activity in the selective oxidation of ethylbenzene by dioxygen to α-phenylethyl hydroperoxide in the presence of nickel bis(acetylacetonate) (chelate center Ni(O,O)2) and nickel bis(enaminoacetonate) (chelate center Ni(O,NH)2) was studied. The efficiency of selective oxidation of ethylbenzene increases substantially in the presence of the chelate with the Ni(O,NH)2 active center as a catalyst, which is mainly due to the transformation of the catalyst into more active species during the oxidation process. The mechanism of transformation of nickel bis(enaminoacetonate) under the action of dioxygen was suggested. The sequence of formation of the reaction products at different stages of the catalytic process was determined. The activity of the nickel complex with the Ni(O,NH)2 chelate center and the products of its transformation in the elementary stages of chain oxidation of ethylbenzene is discussed. Translated fromIzvestiya Akedemii Nauk. Seriya Khimicheskaya, No. 1, pp. 55–60, January, 1999.  相似文献   

17.
Knowledge of the reaction mechanism is key for rational catalyst improvement. Traditionally mechanistic studies focus on structure and the reaction conditions like temperature, pH, pressure, etc., whereas the time dimension is often overlooked. Here, we demonstrate the influence of time on the mechanism of a catalytic reaction. A dual catalytic mechanism was identified for the CO oxidation over Au/TiO2 by time-resolved infrared spectroscopy coupled with modulation excitation spectroscopy. During the first seconds, CO on the gold particles is the only reactive species. As the reaction proceeds, the redox properties of TiO2 dominate the catalytic activity through electronic metal-support interaction (EMSI). CO induces the reduction and reconstruction of TiO2 whereas oxygen leads to its oxidation. The activity of the catalyst follows the spectroscopic signature of the EMSI. These findings demonstrate the power of studying short-time kinetics for mechanistic studies.  相似文献   

18.
Palladium and Fe3O4 nanoparticles were deposited on N‐(2‐aminoethyl)acetamide‐functionalized cellulose for use in a catalytic reaction. The catalyst was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy, and applied in the oxidation reaction of ethylbenzene at 100 °C using H2O2. Styrene oxide was obtained as the sole product of the oxidation reaction during 24 h. This reaction has some advantages such as one‐pot transformation of ethylbenzene to styrene oxide, high yield, excellent selectivity and magnetically recoverable catalyst. Also, the recovered catalyst could be used in the oxidation reaction four times without decrease in yield. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A reusable solid catalyst, MnFe1.8Cu0.15Ru0.05O4, has been developed as an effective catalyst for the aerobic oxidation of sulfides and sulfoxides to sulfones. The ruthenium modified spinel catalyst is the first example reported for such reaction under mild condition with molecular oxygen as the only oxidant. The oxidation reaction proceeded via an electrophilic attack of the oxygen atom of the catalyst on the electron-rich sulfur atom of the substrate.  相似文献   

20.
The kinetic behavior of partial oxidation of methane to syngas over a LiLaNiO/γ -Al2O3 catalyst was investigated under steady-state conditions. Under kinetic control, syngas, to a large extent, is formed via a direct partial oxidation (DPO) scheme. CO and CO2 are formed in parallel by oxidation reaction over the catalyst. The active sites in the kinetically controlled regime are different from those in the non-kinetic regime, thus the CO selectivity in the former may not increase with temperature. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号