首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying pH values suggest that the imidazolate-bridged complex is stable over the pH-range 7.15–10.0.  相似文献   

2.
Mimicking the Superoxide Dismutase Enzyme (SOD), several imidazolato-bridged copper(II)-zinc(II) complexes were prepared, characterised by IR spectroscopy and their SOD enzyme activity was determined. 2,2′-Bipyridine, 2,2′:6′,2″-terpyridine and tris(2-aminoethyl)amine molecules were used on both metal sides, as coordinating ligands. The complex, containing the 2,2′:6′,2″-terpyridine ligand on copper side has the smallest SOD activity, which indicates the importance of the rigidity of the copper complex in SOD activity.  相似文献   

3.
Decomposition of hydrogen peroxide was examined was examined by using Cu(II)–poly(vinyl alcohol) (PVA) as catalyst. The rates of decomposition were measured. Electronic spectra and infrared spectra of Cu(II)–PVA complex systems were determined at various stages of decomposition. Effect of addition of various amines to the Cu(II)–PVA system on catalytic action was considered. The relation between the initial rate and the initial concentration of hydrogen peroxide varied in accordance with the rate expression of Michaelis-Menten type. Cu(II)–PVA complex was found to have a large catalytic activity, while the polymeric PVA ligand and copper(II) ion exhibited less activity than Cu(II)–PVA complex. For hydrogen peroxide decomposition, Cu(II)–PVA complex showed catalytic activity when a stable complex of planar structure formed, while many other polymer complexes reported by other authors showed the catalytic activity when they were in unstable complex forms. An amine substituent has a critical influence on the rate of hydrogen peroxide decomposition. The mechanism in the first step of reaction for hydrogen peroxide decomposition is discussed.  相似文献   

4.
The dimeric copper(II) complex di‐µ‐chloro‐bis[chloro(di‐3,5‐dimethylpyrazole)copper(II)] (A) in the presence of co‐oxidant hydrogen peroxide acts as a catalyst for the oxidation of benzylic alcohols to give the corresponding aldehydes. In the presence of hydrogen peroxide it also catalyses the oxidation reaction of 2,6‐dimethylphenol to 4,4′‐dihydroxy‐3,5,3′,5′‐tetramethylbiphenyl. The oxidative reactions by bis‐pyridinium tetrachlorocopper(II) (B) in the presence of hydrogen peroxide were compared for similar catalytic reactions of A, and it is observed that B can catalyse the oxidation of aromatic diols, 2,6‐dimethylphenol and thiophenol, but is not suitable for oxidation of benzylic alcohols. Bis‐(N‐phenyl‐3,5‐dimethylpyrazole)copper(II) nitrate monohydrate (C) has a suitable redox potential for one‐electron oxidation. It can oxidize ferrocene to the ferricinium cation, and it can liberate bromine from tetra‐alkylammonium bromides. The complex is catalytically effective for the oxidation of different aromatic and aliphatic aldehydes to the corresponding carboxylic acids. The compound is also effective in transforming benzylic amine to benzylalcohol and benzaldehyde. It can also oxidize diphenylmethane to give benzophenone and diphenylmethanol. It is observed that in each of these complexes a quasi‐reversible Cu(I)–Cu(II) species is present and facilitates the single‐electron oxidation process. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Three copper(II) complexes, 1, 2, and 3 with L(1), L(2) and L(3) [L(1) = 2-(2-aminoethyl)-pyridine; L(2) = 2-(N-ethyl-2-aminoethyl)-pyridine; L(3) = 3,3'-iminobis(N,N-dimethylpropylamine)], respectively, were synthesized and characterized. Addition of nitric oxide gas to the degassed acetonitrile solution of the complexes were found to result in the reduction of the copper(II) center to copper(I). In cases of complexes 1 and 2, the formation of the [Cu(II)-NO] intermediate prior to the reduction of Cu(II) was evidenced by UV-visible, solution FT-IR and X-band EPR spectroscopic studies. However, for complex 3, the formation of [Cu(II)-NO] has not been observed. DFT calculations on the [Cu(II)-NO] intermediate generated from complex 1 suggest a distorted square pyramidal geometry with the NO ligand coordinated to the Cu(II) center at an equatorial site in a bent geometry. In the case of complex 1, the reduction of the copper(II) center by nitric oxide afforded ligand transformation through diazotization at the primary amine site in acetonitrile solution; whereas, in an acetonitrile-water mixture, it resulted in 2-(pyridine-2-yl)ethanol. On the other hand, in cases of complexes 2 and 3, it was found to yield N-nitrosation at the secondary amine site in the ligand frameworks. The final organic products, in each case, were isolated and characterized by various spectroscopic studies.  相似文献   

6.
Li D  Li S  Yang D  Yu J  Huang J  Li Y  Tang W 《Inorganic chemistry》2003,42(19):6071-6080
The imidazolate-bridged homodinuclear Cu(II)-Cu(II) complex, [(CuimCu)L]ClO(4).0.5H(2)O (1), and heterodinuclear Cu(II)-Zn(II) complex, [(CuimZnL(-)(2H))(CuimZnL(-)(H))](ClO(4))(3) (2), of a single macrocyclic ligand with two hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22,2,2,2(11,14)]triaconta-1,11,13,24,27,29-hexaene), have been synthesized as possible models for copper-zinc superoxide dismutase (Cu(2),Zn(2)-SOD). Their crystal structures analyzed by X-ray diffraction methods have shown that the structures of the two complexes are markedly different. Complex 1 crystallizes in the orthorhombic system, containing an imidazolate-bridged dicopper(II) [Cu-im-Cu](3+) core, in which the two copper(II) ions are pentacoordinated by virtue of an N4O environment with a Cu.Cu distance of 5.999(2) A, adopting the geometry of distorted trigonal bipyramid and tetragonal pyramid, respectively. Complex 2 crystallizes in the triclinic system, containing two similar Cu-im-Zn cores in the asymmetric unit, in which both the Cu(II) and Zn(II) ions are pentacoordinated in a distorted trigonal bipyramid geometry, with the Cu.Zn distance of 5.950(1)/5.939(1) A, respectively. Interestingly, the macrocyclic ligand with two arms possesses a chairlike (anti) conformation in complex 1, but a boatlike (syn) conformation in complex 2. Magnetic measurements and ESR spectroscopy of complex 1 have revealed the presence of an antiferromagnetic exchange interaction between the two Cu(II) ions. The ESR spectrum of the Cu(II)-Zn(II) heterodinuclear complex 2 displayed a typical signal for mononuclear trigonal bipyramidal Cu(II) complexes. From pH-dependent ESR and electronic spectroscopic studies, the imidazolate bridges in the two complexes have been found to be stable over broad pH ranges. The cyclic voltammograms of the two complexes have been investigated. Both of the two complexes can catalyze the dismutation of superoxide and show rather high activity.  相似文献   

7.
Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV–Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.  相似文献   

8.
The macrocyclic polyamine 2,5,8,11,14-pentaaza[15]-[15](2,9)[1,10]phenanthrolinophane (neotetren) is studied in its ability to coordinate Cu(ii) even at very low pH values and to interact, as a metal complex, with DNA. The kinetics and equilibria for 1 : 1 and 2 : 1 metal-ligand complexes formation are studied by the stopped-flow method and UV spectrophotometry. Differently protonated complexes are formed, with rate constants much lower than that of water exchange at copper(II) and other Cu(II)/amine systems, this behaviour being ascribed to ring effects and intra-molecular hydrogen bonds. Concerning the DNA/copper(II)-neotetren complexes interaction, analysis of data suggests an intercalative mode of binding. The kinetic results for both DNA/CuL and DNA/Cu(2)L systems agree with the sequence D + S <-->D,S <-->DS where the metal complexes (D) react with the DNA sites (S) leading to fast formation of an externally bound form (D,S) which is converted into an intercalated complex (DS). A very slow process is also detected and ascribed to a conformational change in the polynucleotide secondary structure where the metal centre plays a crucial role. Chromatographic experiments demonstrate that both the investigated Cu(II)/L complexes are able to cleave DNA, but only in the presence of hydrogen peroxide.  相似文献   

9.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of N-tris[(1,2-dicarboxyethoxy)ethyl]amine (TCA6) with Ca(II), Mn(II), Cu(II) and Zn(II) ions in aqueous 0.1?M NaCl solution were studied at 25°C by potentiometric titration. A model for complexation and stability constants of the complexes were determined. With all of the metals, complex formation was dominated by ML4?. Comparison of TCA6 and six other chelating agents showed TCA6 to be suitable for applications where strong calcium binding is essential.  相似文献   

10.
Magnetic mesoporous silica nanocomposite, Fe3O4@MCM-41, was prepared and functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS). Then Schiff base grafted nanoparticles were synthesized by the condensation of 5,5'-methylene bis (salicylaldehyde) and then benzhydrazide with Fe3O4@MCM-41-AEAPS. Finally, by adding Cu (CH3COOH)2.H2O, the magnetic nanoparticles (MNPs) functionalized with Cu (II) Schiff base complex were synthesized. The new organic–inorganic hybrid nanocomposite was characterized by FT-IR, PXRD, AAS, BET, TGA, VSM, FE-SEM, HRTEM and EDX techniques. Then, the performance of this copper based magnetic nanocatalyst was investigated for the synthesis of 5-substituted 1H-tetrazole derivatives using one pot three-component reactions of various aldehydes, hydroxyl amine hydrochloride and sodium azide. The catalyst can be easily isolated from the reaction mixture by applying an external magnet and reused for at least 5 times without significant loss in catalytic activity. Also, the antibacterial activity of the streptomycin loaded magnetic nanoparticles against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria in the presence and absence of a magnetic field were studied. Results revealed that when these materials exposed to the magnetic field, bacteriostatic activity of nanocomposites was increased. Furthermore, the enzyme immobilization ability of the synthesized compounds was investigated and the results showed that these nanoparticles efficiently immobilized amylase enzyme.  相似文献   

11.
Poly(styrene-co-dimethylaminoethyl methacrylate) and poly(methyl methacrylate-co- dimethylaminoethyl methacrylate) were prepared by solution polymerization. These polymers were quaternized by methyl iodide and n-hexyl bromide. The produced polymers were used as support in the aqueous oxidation of 2,6-di-tert-butylphenol (DBP) using hydrogen peroxide catalyzed by tris(2-aminoethyl)amine copper(II) complex “Cu(II)-tren complex” anchored on the prepared polymers. The products obtained from the reactions were 3,3′-5,5′-tetra-tert-butyldiphenoquinine (DPQ) and 2,6-di-tert-butyl-p-benzoquinone (BQ). No reaction products were obtained when the reaction was carried out in the absence of polymeric catalyst. The polymer composition and reaction medium greatly affect product distribution of the reaction. Polar organic solvent like DMF and methanol favor the formation of DPQ, while nonploar organic solvent like benzene and methylene chloride favor the formation of BQ. Hydrophobic branches of polymers 6 (PS-HexBr-Cu-TREN) and 8 (PMMA-HexBr-Cu-TREN) favor BQ formation as the weight of support increased. On the other hand, DPQ is favored in the presence of hydrophilic branches as observed for both polymeric catalysts 5 (PS-MeI-Cu-TREN) and 7 (PMMA-MeI-Cu-TREN).  相似文献   

12.
铜锌超氧化物歧化酶(CuZnSOD)作为一种抗氧化酶, 最重要的功能是催化超氧阴离子歧化为过氧化氢和氧气。然而最近研究发现CuZnSOD具有过氧化物酶活性,能导致核酸、蛋白质和细胞膜的损伤。本工作采用光谱学和酶学方法研究外源Cu(Ⅱ)与CuZnSOD之间的相互作用,以及H2O2存在下外源Cu(Ⅱ)对 CuZnSOD断裂DNA活性的增强效应。比较CuZnSOD + nCu(Ⅱ) (n=0, 1, 2, 4, 6, 8)和单独Cu(Ⅱ)分别断裂DNA的活性,表明外源Cu(Ⅱ)的加入可显著增强CuZnSOD断裂DNA的活性。相对酶活力和稳态动力学的测定证实了这种增强效应。pH依赖性实验表明断裂DNA的最适pH范围为pH3.6-5.6和pH9.0-10,在不同的pH区域CuZnSOD + nCu(Ⅱ)断裂DNA途径可能不同。  相似文献   

13.
We report the structure, properties and a mechanism for the catecholase activity of a tetranuclear carbonato-bridged copper(II) cluster with the macrocyclic ligand [22]pr4pz (9,22-dipropyl-1,4,9,14,17,22,27,28,29, 30-decaazapentacyclo[22.2.1.1(4,7).1(11,14). 1(17,20)]triacontane-5,7(28),11(29),12,18, 20(30),24(27),25-octaene). In this complex, two copper ions within a macrocyclic unit are bridged by a carbonate anion, which further connects two macrocyclic units together. Magnetic susceptibility studies have shown the existence of a ferromagnetic interaction between the two copper ions within one macrocyclic ring, and a weak antiferromagnetic interaction between the two neighboring copper ions of two different macrocyclic units. The tetranuclear complex was found to be the major compound present in solution at high concentration levels, but its dissociation into two dinuclear units occurs upon dilution. The dinuclear complex catalyzes the oxidation of 3,5-di-tert-butylcatechol to the respective quinone in methanol by two different pathways, one proceeding via the formation of semiquinone species with the subsequent production of dihydrogen peroxide as a byproduct, and another proceeding via the two-electron reduction of the dicopper(II) center by the substrate, with two molecules of quinone and one molecule of water generated per one catalytic cycle. The occurrence of the first pathway was, however, found to cease shortly after the beginning of the catalytic reaction. The influence of hydrogen peroxide and di-tert-butyl-o-benzoquinone on the catalytic mechanism has been investigated. The crystal structures of the free ligand and the reduced dicopper(I) complex, as well as the electrochemical properties of both the Cu(II) and the Cu(I) complexes are also reported.  相似文献   

14.
The [Cu(tren)(Im)Cu(tren)](ClO4)3·MeCN complex [tren=tris(2-aminoethyl)amine; Im=imidazolate anion] has been synthesized and characterized spectrally. The X-ray crystal structure analysis reveals that the imidazolate anion serves as a bridge to form a noncentrosymmetric dimeric structure in the complex. The co-ordination geometry about each copper(II) ion is a distorted trigonal bipyramid with three primary amine groups of the tren ligand forming the equatorial plane. The tertiary amine group and the imidazolate anion are in the axial positions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Two polyamine copper(II) complexes were synthesized by the reaction between N,N,N′,N′-tetrakis(2′-aminoethyl)propane-1,2-diamine hexahydrochloride and copper(II) perchlorate under almost the same conditions except for reaction temperature. The crystal structures of two complexes were determined by X-ray diffraction techniques, which shows that one of the complexes is unexpected and is a double chlorine or chloride-bridged dinuclear copper(II) complex formed by two diethylenetriamines, and another is a pentadentate mononuclear copper(II) complex composed of homo-protonated N,N,N′,N′-tetrakis(2′-aminoethyl)propane-1,2-diamine. The mechanism of the reaction leading to form the unexpected complex was discussed. The UV-visible spectra and cyclic voltammogram of the complexes were measured.  相似文献   

16.
A new biomimetic model for the heterodinuclear heme/copper center of respiratory oxidases is described. It is derived from iron(III) protoporphyrin IX by covalent attachment of a Gly-L-His-OMe residue to one propionic acid substituent and an amino-bis(benzimidazole) residue to the other propionic acid substituent of the porphyrin ring, yielding the Fe(III) complex 1, and subsequent addition of a copper(II) or copper(I) ion, according to needs. The fully oxidized Fe(III)/Cu(II) complex, 2, binds azide more strongly than 1, and likely contains azide bound as a bridging ligand between Fe(III) and Cu(II). The two metal centers also cooperate in the reaction with hydrogen peroxide, as the peroxide adducts obtained at low temperature for 1 and 2 display different optical features. Support to this interpretation comes from the investigation of the peroxidase activity of the complexes, where the activation of hydrogen peroxide has been studied through the phenol coupling reaction of p-cresol. Here the presence of Cu(II) improves the catalytic performance of complex 2 with respect to 1 at acidic pH, where the positive charge of the Cu(II) ion is useful to promote O-O bond cleavage of the iron-bound hydroperoxide, but it depresses the activity at basic pH because it can stabilize an intramolecular hydroxo bridge between Fe(III) and Cu(II). The reactivity to dioxygen of the reduced complexes has been studied at low temperature starting from the carbonyl adducts of the Fe(II) complex, 3, and Fe(II)/Cu(I) complex, 4. Also in this case the adducts derived from the Fe(II) and Fe(II)/Cu(I) complexes, that we formulate as Fe(III)-superoxo and Fe(III)/Cu(II)-peroxo exhibit slightly different spectral properties, showing that the copper center participates in a weak interaction with the dioxygen moiety.  相似文献   

17.
Four mononuclear metal complexes (Cu(II) ( 1 ), Ni(II) ( 2 ), Zn(II) ( 3 ) and V(IV) ( 4 )) were synthesized using the Schiff base ligand 2,2′‐{cyclohexane‐1,2‐diylbis[nitrilo(1E )eth‐1‐yl‐1‐ylidine]}bis[5‐(prop‐2‐yn‐1‐yloxy)phenol] and structurally characterized by various spectral techniques. The catecholase‐mimicking activities of 1 – 4 were investigated and the results reveal that all the complexes have ability to oxidize 3,5‐di‐tert ‐butylcatechol (3,5‐DTBC) to 3,5‐di‐tert ‐butylquinone in aerobic conditions. Electrospray ionization mass spectrometry studies were performed for 1 – 4 in the presence of 3,5‐DTBC to determine the possible complex–substrate intermediates. X‐band electron paramagnetic resonance spectroscopy results indicate that the metal centres are involved in the catecholase activity. Ligand‐centred radical generation was further confirmed by density functional theory calculation. The phosphatase‐like activity of 1 – 4 was investigated using 4‐nitrophenylphosphate as a model substrate. All the complexes exhibit excellent phosphatase activity in acetonitrile medium. The interactions of 1 – 4 with calf thymus DNA (CT‐DNA) and bovine serum albumin (BSA) protein were investigated using absorption and fluorescence titration methods. All the complexes strongly interact with CT‐DNA and BSA protein. The complexes exhibit significant hydrolytic cleavage of supercoiled pUC19 DNA. Complexes 1 – 4 exhibit significant in vitro cytotoxicity against MCF7 (human breast cancer) and MIA‐PA‐CA‐2 (human pancreatic cancer) cell lines. Moreover, the molecular docking technique was employed to determine the binding affinity with DNA and protein molecules.  相似文献   

18.
An unique Schiff base ligand, formed by the condensation reaction of 2‐aminobenzothiazole with curcumin and its Cu(II), Ni(II), Co(II) and Zn(II) complexes incorporating 2,2′‐bipyridine as coligand were synthesised. They were characterized via analytical and spectroscopic methods. The complexes adopt square planar geometry. Their antimicrobial activity and photocatalytic efficiency on Congo red dye molecule were explored. It is found that all the complexes are antimicrobial active and show higher activity than the ligand. The nuclease activity of the above metal complexes was also assessed by absorption titration, fluorescence, viscosity and gel electrophoresis assay. The complexes bind CT DNA through intercalation mode. The data reveal that the above synthesised metal(II) complexes are found to be effective metallonucleases. The gel electrophoresis results exhibit that the metal complexes cleave pBR322 plasmid DNA in presence of hydrogen peroxide effectively compared to the ligand. The synthesised metallonucleases should lead to a new era for the logical sketch of dominant agents for probing and targeting nucleic acids. This exploration reveals that Cu(II) complex has a valued biological and photochemical profile.  相似文献   

19.
A new ternary monocopper(II) complex with co‐ligands of 2,2′‐diamino‐4,4′‐bithiazole (dabt) and picrate (pic), namely [Cu(dabt)(pic)2], has been synthesized and characterized using elemental analyses, molar conductance measurements, infrared and electronic spectral studies and single‐crystal X‐ray diffraction. The crystal structure analyses revealed that the copper(II) ion has a {CuN2O4} distorted octahedral coordination environment. The hydrogen bonding interactions contribute to a three‐dimensional supramolecular structure in the crystal. The reactivity towards herring sperm DNA showed that the copper(II) complex can interact with DNA in the mode of intercalation. The molecular docking of the complex with DNA sequence d(ACCGACGTCGGT)2 demonstrated that the copper(II) complex is stabilized by hydrogen bonding interaction. The in vitro anticancer activities suggested that the copper(II) complex is active against selected tumor cell lines. The effects of the two co‐ligands in the copper(II) complex on DNA‐binding events and in vitro anticancer activity are preliminarily discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky [(tren)N4S](1-) ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures are observed. The MII-S thiolate bonds systematically decrease in length across the series (Mn-S > Fe-S > Co-S > Ni-S approximately Cu-S < Zn-S) with exceptions occurring upon the occupation of sigma* orbitals. The copper complex, [Cu(II)(S(Me2)N4(tren)]+, represents a rare example of a stable CuII-thiolate, and models the perturbed "green" copper site of nitrite reductase. In contrast to the intensely colored, low-spin Fe(III)-thiolates, the M(II)-thiolates described herein are colorless to moderately colored and high-spin (in cases where more than one spin-state is possible), reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the d-orbitals drop in energy proceeding across the across the series M(2+) (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced M(+1) oxidation state is only accessible with copper, and the more oxidized M(+4) oxidation state is only accessible for manganese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号