首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the ground state phase diagram of the 1D AF spin- Heisenberg model with the staggered Dzyaloshinskii-Moriya (DM) interaction in an external uniform magnetic field H. We have used the exact diagonalization technique. In the absence of the uniform magnetic field (H=0), we have shown that the DM interaction induces a staggered chiral phase. The staggered chiral phase remains stable even in the presence of the uniform magnetic field. We have identified that the ground state phase diagram consists of four Luttinger liquid, staggered chiral, spin-flop, and ferromagnetic phases.  相似文献   

2.
The energy gap of the 1D AF-Heisenberg model in the presence of both uniform (H) and staggered (h) magnetic fields is investigated using the exact diagonalization technique. The opening of the gap in the presence of a staggered field is found to scale with hν, where ν=ν(H) is the critical exponent, and depends on the uniform field. With respect to the range of the staggered magnetic field, two regimes are identified through which the dependence of the real critical exponent ν(H) on H can be calculated numerically. Our numerical results are in good agreement with the results obtained by other theoretical approaches.  相似文献   

3.
The ground-state magnetic phase diagram of a spin S=1/2 two-leg ladder with alternating rung exchange J(n)=J[1 + (-1)n δ] is studied using the analytical and numerical approaches. In the limit where the rung exchange is dominant, we have mapped the model onto the effective quantum sine-Gordon model with topological term and identified two quantum phase transitions at magnetization equal to the half of saturation value from a gapped to the gapless regime. These quantum transitions belong to the universality class of the commensurate-incommensurate phase transition. We have also shown that the magnetization curve of the system exhibits a plateau at magnetization equal to the half of the saturation value. We also present a detailed numerical analysis of the low energy excitation spectrum and the ground state magnetic phase diagram of the ladder with rung-exchange alternation using Lanczos method of numerical diagonalizations for ladders with number of sites up to N = 28. We have calculated numerically the magnetic field dependence of the low-energy excitation spectrum, magnetization and the on-rung spin-spin correlation function. We have also calculated the width of the magnetization plateau and show that it scales as δν, where critical exponent varies from ν = 0.87±0.01 in the case of a ladder with isotropic antiferromagnetic legs to ν = 1.82±0.01 in the case of ladder with ferromagnetic legs. Obtained numerical results are in an complete agreement with estimations made within the continuum-limit approach.  相似文献   

4.
Generalized xy lattice spin models consist of three-component unit vectors, associated with a D-dimensional lattice (say ), parameterized by usual spherical angles (θkk), and interacting via a ferromagnetic potential restricted to nearest neighbours, of the form here epsilon is a positive quantity setting energy and temperature scales. The models were recently introduced, and proven to support an ordering transition taking place at finite temperature when D=3; in turn, this transition had been investigated by different techniques for p=2,3,4, and found to belong to the same universality class as the xy model (i.e. p=1). More recently, it was rigorously proven that for sufficiently large p the transition becomes first order. Here we present a detailed analysis of the transitional properties of this class of models for selected values of p. For p=8 simulation results showed a second order phase transition belonging to the xy class of universality; they suggested tricritical behaviour for p=12, and gave evidence of first-order transitions for both p=16 and p=20.  相似文献   

5.
Using analytical series expansion by continuous unitary transformations we study the magnetic properties of a frustrated tetrahedral spin- chain. Starting from the limit of isolated tetrahedra we analyze the evolution of the ground state energy and the elementary triplet dispersion as a function of the inter-tetrahedral coupling. The quantum phase diagram is evaluated and is shown to incorporate a singlet product, a dimer, and a Haldane phase. Comparison of our results with those from several other techniques, such as density matrix renormalization group, exact diagonalization, bond-operator theory and other numerical series expansion are provided and convincing agreement is found.  相似文献   

6.
A.S.T. Pires  B.V. Costa 《Physica A》2009,388(18):3779-3784
In this paper we study the quantum phase transition in a three-dimensional XY model with single-ion anisotropy D and spin S=1. The low D phase is studied using the self consistent harmonic approximation, and the large D phase using the bond operator formalism. We calculate the critical value of the anisotropy parameter where a transition occurs from the large-D phase to the Néel phase. We present the behavior of the energy gap, in the large-D phase, as a function of the temperature. In the large D region, a longitudinal magnetic field induces a phase transition from the singlet to the antiferromagnetic state, and then from the AFM one to the paramagnetic state.  相似文献   

7.
In this paper we study the dynamics of the two-dimensional XY model with single-ion anisotropy, and spin S = 1, in the large D phase, and low temperatures, using the bond operator formalism. The in-plane structure factor is a delta function. The out of plane shows a three peak structure, which merges in a single peak at the Brillouin zone boundary. We analyze also spin currents generated by a magnetic field gradient. The spin conductivity is calculated, at finite temperature, using the Kubo formula. The model shows unconventional ballistic spin transport at finite temperature. The computed spin conductivity exhibits a nonzero Drude weight at finite temperature. For ω< 2m, where m is the energy gap, the spin conductivity is described solely by the Drude weight. There is a regular contribution to the spin conductivity for ω> 2m, which persist in the zero temperature limit. The conductivity at the critical point, and for small frequencies, is (gμB)2/ħ times a universal scaling function of ħω/kB T.  相似文献   

8.
We investigate the phase decoherence effects on the entanglement of a two-qubit anisotropic Heisenberg model with a nonuniform magnetic field in the x–z-plane. As a measure of the entanglement, the concurrence of the system is calculated. It is shown that when the magnetic field is along the z-axis, the nonuniform and uniform components of the field have no influence on the entanglement for the cases of and , respectively. But when the magnetic field is not along the z-axis, both the uniform and the nonuniform components of the field will introduce the decoherence effects. It is found that the effects of the Heisenberg chain's anisotropy in the Z-direction on the entanglement are dependent on the direction of the field. Moreover, the larger the initial concurrence is, the higher value it will exhibit during the time evolution of the system for a proper set of the parameters ν, Δ, θ, γ , B and b.  相似文献   

9.
Haina Wu  Guangyu Yi 《Physics letters. A》2008,372(43):6531-6535
The mixed spin-1/2 and spin-1 Ising chain with both longitude and transverse single-ion anisotropies Dz and Dx is solved exactly by means of a mapping to the spin-1/2 Ising chain with the alternating transverse fields and the Jordan-Wigner transformation. The analytical expressions of the quasi-particles' spectra Λk, the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole, and the ground state energy are obtained. The phase diagram of the ground state is also given. The results show that when Dz?0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase disregard of the boundary condition in the present system.  相似文献   

10.
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij=0, the EHM is equivalent to the pseudospin model with single-ion anisotropy , exchange interaction W in an effective magnetic field . This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.  相似文献   

11.
We study the magnetic behaviors of a spin-1/2 quantum compass chain (QCC) in a transverse magnetic field, by means of the analytical spinless fermion approach and numerical Lanczos method. In the absence of the magnetic field, the phase diagram is divided into four gapped regions. To determine what happens by applying a transverse magnetic field, using the spinless fermion approach, critical fields are obtained as a function of exchanges. Our analytical results show, the field-induced effects depend on in which one of the four regions the system is. In two regions of the phase diagram, the Ising-type phase transition happens in a finite field. In another region, we have identified two quantum phase transitions (QPT)s in the ground state magnetic phase diagram. These quantum phase transitions belong to the universality class of the commensurate-incommensurate phase transition. We also present a detailed numerical analysis of the low energy spectrum and the ground state magnetic phase diagram. In particular, we show that the intermediate state (h c1 < h < h c2) is gapful, describing the spin-flop phase.  相似文献   

12.
The spin-1 Ising model with bilinear and quadrupolar short-range interactions under magnetic field is investigated within the two-particle cluster approximation. It is shown that for those values of the quadrupolar interaction when at zero magnetic field the system undergoes a temperature phase transition between quadrupolar and paramagnetic phases, a triple point may exist in the temperature vs. magnetic field phase diagrams, necessarily along with a critical point. It is also shown that the critical points in the temperature vs. magnetic field phase diagrams of the investigated model can be of three types.  相似文献   

13.
Higgs-boson production in association with a W-boson pair at e + e linear colliders is one of the important processes in probing the coupling between the Higgs boson and vector gauge bosons and discovering the signature of new physics. We describe the impact of the complete electroweak (EW) radiative corrections of to this process in the standard model (SM) at the International Linear Collider (ILC), and investigate the dependence of the lowest-order (LO) and EW next-to-leading order (NLO) corrected cross sections on the colliding energy and the Higgs-boson mass. The LO and NLO EW corrected distributions of the invariant mass of the W-boson pair and the transverse momenta of the final W-boson and Higgs boson are presented. Our numerical results show that the relative EW radiative correction (δ ew) varies from −19.4% to 0.2% when m H=120 GeV and grows from 300 GeV to 1.2 TeV.  相似文献   

14.
An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering. Received 30 April 1999 and Received in final form 5 October 1999  相似文献   

15.
We consider the spin-glass phase of the Sherrington-Kirkpatrick model in the presence of a magnetic field. The series expansion of the Parisi function q(x) is computed at high orders in powers of τ = T c - T and H. We find that none of the Parisi-Toulouse scaling hypotheses on the q(x) behavior strictly holds, although some of them are violated only at high orders. The series is resummed yielding results in the whole spin-glass phase which are compared with those from a numerical evaluation of the q(x). At the high order considered, the transition turns out to be third order on the Almeida-Thouless line, a result which is confirmed rigorously computing the expansion of the solution near the line at finite τ. The transition becomes smoother for infinitesimally small field while it is third order at strictly zero field. Received 3 March 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: andrea.crisanti@phys.uniroma1.it RID="b" ID="b"e-mail: tommaso.rizzo@phys.uniroma1.it RID="c" ID="c"e-mail: temtam@helios.elte.hu  相似文献   

16.
We study the one-dimensional isotropic spin-1 Heisenberg magnet with antiferromagnetic nearest-neighbor (nn) and next-nearest-neighbor (nnn) interactions by using the modified spin wave theory (MSWT). The ground state energy and the singlet-triplet energy gap are obtained for several values of j, defined as the ratio of the nnn interaction constant to the nn one. We also compare two different ways of implementing the MSWT currently found in the literature, and show that, despite the remarkable differences between the equations to be solved in each procedure, the results given by both are equivalent, except for the predicted value of the jmax, the maximum value of j accessible in each treatment. Here, we suggest that jmax is related to the disorder point of the first kind. Our results show that the ground state and the gap energies increase with j, for j ≤jmax, in accordance to previous numerical results.  相似文献   

17.
We discuss one of the most prominent features of the very recent preliminary elliptic flow data of J/ψ-mesons from the PHENIX Collaboration (PHENIX Collaboration (C. Silvestre), arXiv:0806.0475 [nucl-ex]). Even within the rather large error bars of the measured data a negative elliptic flow parameter (v2) for J/ψ in the range of p T = 0.5-2.5 GeV/c is visible. We argue that this negative elliptic flow at intermediate pT is a clear and qualitative signature for the collectivity of charm quarks produced in nucleus-nucleus reactions at RHIC. Within a parton recombination approach we show that a negative elliptic flow puts a lower limit on the collective transverse velocity of heavy quarks. The numerical value of the transverse flow velocity for charm quarks that is necessary to reproduce the data is (charm) ∼ 0.55-0.6c and therefore compatible with the flow of light quarks.  相似文献   

18.
19.
Ab initio electronic-structure calculations are performed using density functional theory (DFT) with polarized basis set (LanL2DZ and 6-311G++) within the spin polarized generalized gradient approximation for lithium intercalated graphite. Initially different benzene-Li+ model clusters are optimized on the basis of their total energy at room temperature. These model clusters are used to calculate the optimized structure of lithium intercalated graphite clusters. The resultant optimized structures are used to calculate dipole moment, ionization potential (IP), electron affinity (EA), binding energy (BE) and vibrational spectra (IR and Raman). For an idea of the band gap of the clusters in the ground state, the HOMO-LUMO gap (ΔEg) has been calculated. To compare the electron transfer ability of different clusters, chemical potential (μ), hardness (η) and their ratio for different clusters have also been determined.  相似文献   

20.
We compute the magnetic susceptibility and specific heat of the spin- Heisenberg model on the kagome lattice with high-temperature expansions and exact diagonalizations. We compare the results with the experimental data on ZnCu3(OH)6Cl2 obtained by Helton et al. [Phys. Rev. Lett. 98, 107204 (2007)]. Down to kBT/J≃0.2, our calculations reproduce accurately the experimental susceptibility, with an exchange interaction J≃190 K and a contribution of 3.7% of weakly interacting impurity spins. The comparison between our calculations of the specific heat and the experiments indicate that the low-temperature entropy (below ~20 K) is smaller in ZnCu3(OH)6Cl2 than in the kagome Heisenberg model, a likely signature of other interactions in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号