首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
MMA接枝改性PVC/CaCO3纳米复合材料的力学性能   总被引:13,自引:0,他引:13  
采用熔融共混法制备PMMA接枝改性纳米CaCO3增韧PVC(PVC/CaCO3)复合材料,并研究了复合材料的力学性能.结果表明,通过表面PMMA的接枝改性,可以显著提高纳米CaCO3增韧聚氯乙烯复合材料的拉伸强度和拉伸模量,在纳米CaCO3颗粒表面PMMA包覆层厚度为2nm时,复合材料的拉伸强度和拉伸模量达到极大值.对比于未处理纳米CaCO3和钛酸酯偶联剂处理纳米CaCO3,PMMA接枝改性纳米CaCO3增韧PVC复合材料的拉伸强度得到较大幅度提高.SEM显示,经过PMMA接枝改性后的碳酸钙在PVC基体中分散均匀,与基体界面结合良好.  相似文献   

2.
用马来酸酐(MAH)在碳酸钙(CaCO3)表面引入双键,通过原位固相接枝法将聚丙烯蜡(PPW)化学键合在CaCO3表面,制得3种接枝率的CaCO3-MAH-PPW。 将这3种改性CaCO3填充聚丙烯(PP)制备复合材料,研究了PP/CaCO3界面作用对复合材料强度的影响。 结果表明,CaCO3表面经PPW接枝改性后在PP中的分散性提高,与PP相容性变好;随着改性CaCO3表面PPW接枝率的提高,CaCO3与PP之间界面作用逐渐增强。 当PPW接枝率为4.48 mg PPW/g CaCO3时,CaCO3与PP之间的界面作用最强,复合材料拉伸强度下降最小,杨氏模量提升最大,当m(PP)∶m(CaCO3)=100∶50时,杨氏模量达0.86 GPa,是纯PP的1.63倍;而PPW化学接枝率为2.49 mg PPW/g CaCO3时,CaCO3与PP之间的界面作用适中,复合材料缺口冲击强度提升最大,且当m(PP)∶m(CaCO3)=100∶10时,缺口冲击强度达3.91 kJ/m2,是纯PP的1.35倍。  相似文献   

3.
用氯化聚乙烯接枝苯乙烯共聚物(CPE-g-St)和氯化聚乙烯(CPE)对聚苯乙烯(PS)进行共混改性。当CPE含量为25%时,用CPE-gSt改性的共混物的冲击强度为18.5kJ.m^-^2,是用CPE改性的共混物冲击强度的2.1倍;其拉伸强度不低于34MPa。  相似文献   

4.
接枝共聚物氯化聚乙烯-苯乙烯对聚苯乙烯的共混改性   总被引:1,自引:0,他引:1  
用氯化聚乙烯接枝苯乙烯共聚物(CPE-g-St)和氯比聚乙烯(CPE)对聚苯乙烯(PS)进行共混改性.当CPE含量为25%时,用CPE-g-St改性的共混物的冲击强度为18.5kJ·m ̄(-2),是用CPE改性的共混物冲击强度的2.1倍;其拉伸强度不低于34MPa.  相似文献   

5.
纳米二氧化硅改性CPE的研究   总被引:17,自引:1,他引:17  
采用纳米级SiO2改性氯化聚乙烯(CPE),探讨了SiO2用量、表面处理方法、加工工艺等因素对改性CPE力学性能的影响。通过机械共混制备了CPE/SiO2共混材料,性能测试表明:改性后CPE的硬度、300%定伸应力、断裂伸长率、拉伸强度等力学性能均有较大的提高。  相似文献   

6.
纳米CaCO3改性对医用胶乳制品的影响   总被引:1,自引:0,他引:1  
纳米CaCO3是20世纪80年代发展起来的一种新型超细固体材料。由于纳米CaCO3的超细微化,其晶体结构和表面电子结构发生变化,产生普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应。也由于纳米CaCO3的超细微化,使其自身存在难以克服的缺点——附聚形成二次结构。如果附聚粒子最终不能被碾碎后分散,就会潜伏下来,成为应力集中点,最终导致改性材料性能的下降,欲充分发挥纳米CaCO3的纳米效应,有必要研究其填充改性的影响因素,从而确立纳米CaCO3填充改性的最佳参数。实验证明:纳米CaCO3表面状态、含量、表面处理剂用量、纳米CaCO3表面活化改性时搅拌时间都对纳米CaCO3填充改性的效果产生影响。  相似文献   

7.
以聚苯乙烯磺酸钠(PSS)掺杂的多孔碳酸钙(CaCO3)微球层为模板,通过热压低密度聚乙烯(LDPE)并结合酸蚀刻的方法制得了具有多层粘联微球结构、而非常见蜂窝状多孔结构的LDPE稳定超疏水表面(接触角152.8±2.5°,滚动角约6°)。元素分析表明,表面粘联微球为纯LDPE而非LDPE包覆的CaCO3。将多孔CaCO3微球稀疏地撒在LDPE表面并加热熔融,发现微球会自发沉降到熔体内部,酸蚀刻后形成了类似莲蓬的表面微结构,即坑内包含小球。结合CaCO3微球生成原理和多孔结构,认为粘联微球结构和莲蓬结构均是由于LDPE熔融大分子自发沉积到多孔CaCO3微球内部,“反模”形成了LDPE微球所致。本发现为多孔CaCO3微球的应用开辟了新方向。  相似文献   

8.
CaCO_3表面包覆改性及其对填充PP力学性能的影响   总被引:3,自引:1,他引:2  
先用丙烯酸(AA)处理CaCO3,在其表面引入活性双键基团后,再通过固相包覆反应将聚丙烯蜡(PPW)固定在CaCO3表面.实验发现改性CaCO3可经受甲苯、稀盐酸处理而不发生溶解,结合红外及热重分析结果,证明PPW已经通过化学键合而成功地包覆在CaCO3表面.将该改性CaCO3填充聚丙烯(PP)后,发现PP的冲击性能及拉伸性能均有不同程度的提高,当改性CaCO3的填充量为15份时,体系的缺口冲击强度达到最大值,为基体树脂的1.68倍;当改性CaCO3的填充量10份时拉伸强度达到峰值,为同等添加量的未改性CaCO3的1.22倍.  相似文献   

9.
含环氧基的丙烯酸酯共聚物改性环氧树脂   总被引:10,自引:0,他引:10  
合成了一系列含环氧基团的丙烯酸酯聚合物(HGMB),并对其改性环氧树脂/4,4‘-二氨基二苯基甲烷的抗冲性能,动态力学行为进行了考察,结果表明:当必性体系中加入质量分数为15%的HGMB(甲基丙烯酸缩水甘油酯、甲基丙烯酸羟乙基酯、甲基丙烯酸甲酯、丙烯酸丁酯的摩尔分数分别为4.3%、5%、25.7%、65%)时,与空白体系相比,改性体系的冲击强度提高50%,且玻璃化有所提高,模量没有降低。  相似文献   

10.
本文对木纤维作增强填料填充低密度聚乙烯(LDPE)所获得的生物降解复合材料力学性能进行了研究.分别用四种不同的偶联剂:改性钛酸酯类偶联剂TC-POT、TC-PBT和硅烷类偶联剂γ-(2,3环氧丙氧基)丙基三甲基硅烷(KH-560)、甲基乙烯基硅烷(205-Silane)处理水纤维,经实验发现用改性钛酸酯类偶联剂TC-POT、TC-PBT处理的木纤维对低密度聚乙烯(LDPE)具有较好增强作用,所组成的复合材料具有较好的力学性能.本文也研究了不同偶联刘含量处理木纤维对复合材料力学性能的影响。  相似文献   

11.
Sepiolite (SEP) nanofibers have been modified by grafting with poly(pentaerythritol diphosphonate dichloride‐hexamethylendiamine) (PSPHD) and compounded with low density polyethylene (LDPE) to form a nanocomposite. The various modified SEPs were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared, transmission electron microscopy (TEM), and thermogravimetric analysis. The Fourier transform infrared and X‐ray photoelectron spectroscopy tests show that covalent bonding exists between SEP fiber and modifiers. The nanoscale size and morphologies of SEP fiber and modified SEP nanofibers can be observed clearly by TEM. The thermogravimetric analysis results reveal that the multi‐step thermal degradation process of SEP fiber is changed by grafting modification. The various LDPE/SEP nanocomposites were characterized by scanning electron micrograph, TEM, dynamic mechanical analysis, and tensile test. The results suggest that a good interfacial modification effect has been obtained between PSPHD‐SEP and LDPE matrix. A particular improvement in tensile strength is reflected in tensile tests. Dynamic mechanical analysis shows that the storage moduli (E') of PSPHD‐SEP/LDPE nanocomposites are much higher than that of neat LDPE and a‐SEP/LDPE systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The synergism of ethylene-propylene-diene monomer copolymer (EPDM) and dicumyl peroxide (DCP, a crosslinking agent) in low density polyethylene (LDPE)/poly(vinyl chloride) (PVC) blends was investigated. When EDPM and DCP are added to the blends simultaneously, the tensile properties could be improved significantly, especially for the blends with LDPE matrix. For example, incorporation of 10/1 (mass ratio) EPDM/DCP improves the tensile strength of the LDPE/PVC (mass ratio 80/20) blend from 7.9 MPa to 8.5 MPa and the elongation at break from 25% to 503%. Results from selective extraction, phase-contrast microscopy and thermal analysis reveal that the improvement in the tensile properties of the blends with LDPE matrix is principally due to the formation of a fine crosslinking network of the LDPE and EPDM phase. The outstanding modification effect of EPDM is explained by its dual functions: molecular entanglement with LDPE and the enhanced efficiency of DCP in the blends.  相似文献   

13.
The influence of nano-silica, synthesized and mixed with low-density polyethylene (LDPE) through a sol-gel process, on the thermal and mechanical properties of LDPE and LDPE/wood flour (WF) composites, prepared in the absence and presence of dicumyl peroxide, was investigated. Scanning electron microscopic (SEM) analyses show a uniform dispersion of silica nano-particles of size 10-50 nm in the matrix, and Fourier-transform infrared (FTIR) spectroscopic results indicated interaction between the nano-silica and the LDPE matrix, which seems to improve for samples prepared in the presence of dicumyl peroxide (DCP). WF and nano-silica, as well as the presence of DCP during sample preparation, substantially improve the thermal stability of the LDPE matrix. The tensile strength of the samples decreased with increasing wood flour content, while the tensile modulus substantially increased. The presence of nano-silica gave rise to lower values for both tensile strength and tensile modulus, while higher tensile strength (and an increase in tensile strength with WF content) is observed for samples prepared in the presence of DCP. The tensile modulus increases with increasing WF content, but is not substantially influenced by the presence of nano-silica or by sample preparation in the presence of DCP. The DMA results were in line with the tensile results.  相似文献   

14.
CaCO3/PEEK复合体系的力学行为和热行为研究   总被引:7,自引:0,他引:7  
以聚醚醚酮和碳酸钙复合体系为研究对象,考察了偶联剂和填料添加量对复合材料力学行为和热行为的影响.发现磺化聚醚醚酮作为偶联剂能有效地改善材料的力学性能,提高基体树脂的玻璃化转变温度,降低基体树脂的熔点,有助于改善聚醚醚酮的加工条件  相似文献   

15.
纳米级CaCO_3粒子与弹性体CPE微粒同时增韧PVC的研究   总被引:12,自引:0,他引:12  
研究了平均粒径为 30nm的超细级纳米CaCO3 与氯化聚乙烯 (CPE)对聚氯乙烯 (PVC)共混体系二元协同增韧效应及机制 .结果表明 ,当共混体系中有一定量的CPE时 ,纳米CaCO3 的加入可以明显地提高共混物的韧性 ,而不降低共混物的强度和刚性 .纳米CaCO3 在PVC基体中达到了纳米级的分散 .当纳米CaCO3 的用量为 8份 (质量 )时 ,PVC CPE 纳米CaCO3 共混物的冲击断面产生了大量的有规则的网丝状结构 ,共混物的缺口冲击强度达到 81 1kJ m2 ,比不加纳米CaCO3 的共混体系高 7 3倍 .CPE的加入对共混体系的加工流动性能无影响 ,纳米CaCO3 的加入使共混体系的加工流动性能变差  相似文献   

16.
New types of composites were prepared using low-density polyethylene (LDPE) filled with modified organic filler, Canadian switch grass coated with polypyrrole (PPy). The grass surface was entirely covered when 10 wt.% of pyrrole was used for the modification, as confirmed by scanning electron microscopy and infrared spectroscopy. LDPE composites filled with modified grass were prepared by melt mixing and their properties were compared with the properties of the composites filled with unmodified grass. The influence of crosslinking, induced by 1 wt.% of peroxide, on mechanical, thermal and electrical properties of the composites was investigated. Crosslinking enhanced the tensile strength of the prepared composites in the entire range of the filler content. The Young’s modulus of the composites prepared by crosslinking is slightly lowered when compared with the uncrosslinked composites if the filler content is less than 60 wt.%, for higher filler content it is increased. The conductivity of the uncrosslinked composites containing 40 wt.% of grass modified by PPy was in the range 1 × 10−6 S cm−1, which is a value by 5 orders of magnitude higher than the conductivity of the crosslinked materials. The presence of PPy on grass surface leads to a reduction of crosslinking of the LDPE matrix.  相似文献   

17.
Nanocomposites containing natural rubber (NR) as matrix, epoxidized natural rubber (ENR) as compatibilizer and organophilic layered clay (organoclay) as filler were produced in an internal mixer and cured using a conventional sulphuric system. The effects of ENR with 25 (ENR 25) and 50 mol% epoxidation (ENR 50), respectively, were compared at 5 and 10 parts per hundred rubber (phr) concentrations. The organoclay content was fixed at 2 phr. Cure characteristics, clay dispersion, (thermo)mechanical properties of the nanocomposites were determined and discussed. Incorporation of ENR and organoclay strongly affected the parameters which could be derived from Monsanto MDR measurements. Faster cure and increased crosslink density were attributed to changes in the activation/crosslinking pathway which was, however, not studied in detail. The organoclay was mostly intercalated according to X-ray diffraction (XRD) and transmission electron microscopic (TEM) results. The best clay dispersion was achieved by adding ENR 50. This was reflected in the stiffness of the nanocomposites derived from both dynamic mechanical thermal analysis (DMTA) and tensile tests. The tensile and tear strengths of the ENR 50 containing nanocomposites were also superior to the ENR 25 compatibilized and uncompatibilized stocks.  相似文献   

18.
This research work has concerned a study on toughness of PVC/natural rubber (NR) blends compatibilized with epoxidized natural rubber (ENR). The aim of this work was to investigate the effect of degree of epoxidation on morphology and mechanical properties of the blends. Epoxidized natural rubber with a variety of epoxidation contents were prepared by reacting the NR latex with formic acid and hydrogen peroxide at various chemical contents. Chemical structure and epoxidation content of epoxidized natural rubber were evaluated by FTIR and 1H-NMR techniques. After that, three grades of ENR with epoxidation contents of 15, 25 and 42 % (by mole) were further used for blending with PVC and NR in an internal mixer at 60 rpm and at 170 °C. From tensile and impact tests, it was found that tensile elongation and impact strength of the materials remarkably increased with degree of epoxidation. On the other hand, tensile strength and modulus of the materials rarely changed with the epoxidation content. An increase in toughness of the blends with epoxidation content was related to a better molecular interaction between PVC and ENR as suggested by torque-time curves of the materials.  相似文献   

19.
High oxygen barrier films were prepared based on low‐density polyethylene (LDPE)/ethylene vinyl alcohol (EVOH)/ nanoclay and polyethylene‐grafted‐maleic anhydride (LDPE‐g‐MA) as a compatibilizer. Box–Behnken statistical experiment design methodology was employed to study the effects of nanoclay, LDPE‐g‐MA, and EVOH presence and their contents on various properties of the final films. The R2 parameter varied between 0.89 and 0.99 for all the obtained responses. The morphology of the samples was evaluated. Results of oxygen transfer rate (OTR) test indicated that the addition of EVOH up to 30 wt% to neat LDPE can decrease oxygen permeability significantly. The addition of nanoclay also decreased the permeability of resulting films but, LDPE‐g‐MA reduced the permeability of the films only at an optimal content. Elastic modulus was increased with the addition of nanoclay, EVOH, and LDPE‐g‐MA to the matrix. An increase in EVOH content in the samples improved the tensile strength. Effect of nanoclay on tensile strength was highly dependent on the presence of a compatibilizer. The addition of compatibilizer to the samples and increasing its content enhanced the tensile strength of the specimens. Incorporation of nanoclay, EVOH, and LDPE‐g‐MA to the LDPE matrix and increasing the amount of these components in the samples led to higher storage modulus, zero shear rate viscosity, and shear thinning exponent, but, lowered the terminal slope and the frequency of intersection point of storage modulus (G′) and loss modulus (G″). The only exception was that EVOH increment resulted in a lower shear thinning exponent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号