首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a semiconductor laser diode that has an asymmetric Mach–Zehnder interferometer all-optical switch in the cavity has been studied experimentally. This novel device was designed to be free from clock pulse insertion, since mode-locked optical pulses are generated internally and change the balance of the interferometer periodically. The device was fabricated using a InGaAsP/InP buried heterostructure and the primary optical properties of the device were investigated. Lasing characteristics that were peculiar to the twin-cavity structure were observed, i.e., continuous-wave lasing power oscillation in relation to the injection current balance between the two arms, and cyclic changes in the single/multiple emission peaks as a function of bias voltage at the saturable absorber. Electrical spectrum analysis indicated 40 GHz modulation of lasing output from the twin-cavity laser.  相似文献   

2.
All-optical 2R regeneration in a semiconductor optical amplifier-based Mach–Zehnder interferometer is theoretically analyzed. It is shown that the chirp of the regenerated signal is positive, while the input signal has no chirp. The peak extinction ratio (ER) of the regenerated signal is associated with the input wavelength and there exists an input wavelength corresponding to the largest ER of the output signal. The output peak ER is also found influenced by the input power, with lower input power getting higher peak ER.  相似文献   

3.
This paper presents an electro-optic modulated circular heterodyne modified Mach–Zehnder interferometer and a convenient two-phase signal-processing algorithm for the measurement of variations in the magnitude of phase retardation and the angle of principal axis in optical materials. The developed method solves the problems of normalized intensity jump and limited phase retardation measurement range associated with the circular heterodyne interferometer proposed previously. The present method uses a saw-tooth wave signal to drive an electro-optic (EO) modulator, and employs a lock-in amplifier to demodulate the principal axis angle and the phase retardation. Specifically, this paper considers two main sources of measurement errors, namely the misorientation of the EO modulator and the reflection phase retardation of the beam splitter. Furthermore, the study develops calibration procedures and identifies a means to minimize measurement errors induced by the reflection phase retardation of the beam splitter.  相似文献   

4.
A multiplexed white light interferometric fiber optic sensors matrix system was designed and demonstrated. In this system, a Mach–Zehnder optical path interrogating technique is used to demodulate each sensor of the sensors matrix. The sensors matrix consists of M×N sensing elements linked by a 1×M star coupler. The multiplexing capacity of the sensing scheme has been analyzed and an experimental result with a 2×2 sensors matrix was presented.  相似文献   

5.
We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The laser can control the oscillation frequency difference between two counterpropagating lights by incorporating a birefringent medium into the ring resonator. Since the frequency difference is proportional to the birefringence, it can be measured to detect the beat frequency generated by combining two counterpropagating lights and the laser can be applied to an optical fiber sensor whose detecting signal is in frequency domain. Electric field sensor was demonstrated with a lithium niobate crystal as a sensing probe.  相似文献   

6.
Performance analysis is carried out for an all-optical wavelength converter based on cross-phase modulation in two semiconductor optical amplifiers (SOAs) arranged in a Mach–Zehnder interferometer configuration to evaluate the efficiency of conversion and the signal-to-crosstalk ratio (SCR) at the output of the converter. The results evaluated analytically for input non-return to zero signal at a bit rate of 10 Gb/s show that conversion is possible over a wavelength separation of 2 nm between the pump and the input wavelengths. It is further noticed that SCR of the order of 50 dB or more can be achieved at a bit rate of 10 Gb/s, optical amplifier bandwidth of 10 times bit rate and driving current of 600 mA when the input pump is 60% of saturation intensity. The range of wavelength conversion can further be increased by increasing the driving current.  相似文献   

7.
The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.  相似文献   

8.
Photonic crystal technology allows the creation of optical waveguides with low sharp-bending losses as well as ultra-low group velocity. This last property is particularly interesting to develop highly-compact optical devices based on the controlled modification of the optical phase of the signals traveling through the waveguides. Among these devices, the Mach–Zehnder interferometer acquires fundamental importance because it can be used as a building block of more complex optical devices and functionalities such as optical filters, wavelength demultiplexers, channels interleavers, intensity modulators, switches and optical gates. In this paper, the performance of a Mach–Zehnder interferometer consisting of two coupled-cavity waveguides with different lengths created in a two-dimensional photonic crystal is theoretically analyzed. We also provide simulation results using a finite-difference time-domain code that confirm the theoretical analysis. The main limitations in the performance of the structure are addressed and discussed.  相似文献   

9.
1 × 4 and 4 × 4 wavelength demultiplexers using multimode interferometer (MMI) were successfully demonstrated in InP/InGaAsP. Optical transmission characteristics were measured for each input to output for transverse electric (TE)/transverse magnetic (TM) modes. Reduced polarization sensitivity less than 0.3 nm was achieved in 1 × 4 MMI-MZ demultiplexer with –15 dB channel-to-channel cross talk. For 4 × 4 MMI-MZ demultiplexer, the optical crosstalk was well below –16 dB in TM mode for all input to output measurements.  相似文献   

10.
We demonstrate a multi-wavelength semiconductor optical amplifier (SOA) fiber ring laser with a dual-pass Mach-Zehnder interferometer (MZI) filter. Two SOAs with different gain spectra provide sufficient gain and a wider gain spectrum to facilitate multi-wavelength lasing. The dual-pass MZI, configured by adding an optical isolator to the two outputs of the conventional MZI, serves as comb filter for multi-wavelength operation, and its extinction ratio can be enhanced to twofold as that of the conventional MZI in the same parameters. To investigate the influences of a dual-pass MZI filter and a conventional MZI filter on multi-wavelength operation, two different cavity configurations are presented and compared, including a single-SOA ring cavity and a double-SOA ring cavity. Stable simultaneous operation at 82 wavelengths, with a wavelength spacing of 40 GHz and a power deviation of 5 dB, and with a minimum optical signal-to-noise ratio (OSNR) of 28 dB, is observed from the double-SOA ring cavity using a dual-pass MZI filter.  相似文献   

11.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

12.
Path length difference is the key parameter in two-beam interferometer, especially in low coherence interferometer. It determines the visibility of the interference fringes. In this study, we present a method to determine the path length difference between two arms of a fiber optic Mach–Zehnder interferometer by evaluating the peaks of power distribution of the interference spectrum with a wide band light source. The experimental results are in close agreement with the theoretical calculations.  相似文献   

13.
A four-element fiber Bragg grating acceleration sensor array is presented in this paper. The system combines an unbalanced Mach–Zehnder interferometer and three coarse wavelength division multiplexers (WDMs). The totally passive scheme has the advantages of high operation frequency and loose requirements for the working environment. An acceleration resolution of better than for the four channels is achieved.  相似文献   

14.
A novel actively and passively mode-locked semiconductor optical amplifier fiber ring laser was presented, where semiconductor optical amplifier provided cavity gain and introduced nonlinear polarization rotation, whereas, intensity modulator not only acted as modulator but also polarizer. The pulses with duration below 3 ps (FWHM) and peak power about 16 mW at a repetition rate of 10 GHz can be obtained in our system and the system stability may be enhanced. To investigate system parameters effects on mode-locked pulses, a theoretical model was developed.  相似文献   

15.
An improved harmonic mode-locked Semiconductor optical amplifier (SOA) fiber ring lasers has been presented and numerically investigated based on the self-reproduction theory. The numerical result shows that a narrower optical pulse train with a more symmetrical-temporal shape can be obtained, when the modulation SOA is DC biased on high current, whereas the gain SOA is DC biased on the low current functions as a gain compensator in the experimental setup. Also, the system parameters effects on the characteristic of the harmonic mode-locked pulse have been investigated.  相似文献   

16.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

17.
A stable room-temperature multi-wavelength Brillouin–Raman fiber laser with a ring cavity configuration was proposed and experimentally investigated. An obvious suppressant effect for unstable mode hopping of multi-wavelength lasing oscillations induced by deeply saturated effect was observed in the ring cavity configuration. Stable room-temperature multi-wavelength lasing oscillations with more than 30 lasing lines and wavelength spacing of 0.076 nm were obtained with only 250 mW Raman pump power and a section of high nonlinear fiber with a length of 1.5 km. The lasing output is so stable that the maximum power fluctuations for the foremost three Stokes lines over more than 20 min of observation were less than 0.30 dB. The lasing stability of the laser was also compared with a linear cavity configuration with the same gain components and pump conditions. While using the linear laser cavity configuration, obvious mode hopping was observed. The minimum value of the maximum power fluctuations at all lasing lines over more than 10 min of observation was more than 0.90 dB.  相似文献   

18.
We demonstrate a fiber ring laser with a dispersion compensation fiber (DCF) and a delayed interferometer (DI) with temperature control, which is able to switch eleven wavelengths one by one. In ring cavity, DCF supplies different effective cavity lengths for different wavelengths, DI generates a wavelength comb corresponding to the ITU grid, a flat-gain erbium-doped fiber amplifier (EDFA) provides uniform gain for each lasting wavelength, and a semiconductor optical amplifier (SOA) not only acts as active modulator, but also alleviates homogeneous broadening effect of EDFA. Stable pulse trains with a pulsewidth about 40 ps at 10 GHz have been obtained by injecting external optical control signals into the laser. Wavelength switching process among eleven wavelengths is achieved by merely tuning an intracavity optical delay line.  相似文献   

19.
A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.  相似文献   

20.
In this paper, a novel 1 × 4 optical multiplexer (OMUX) based on the two dimensional photonic crystal embed cascaded Mach–Zehnder interferometer (MZI) employing self-collimation effect was proposed and its performance were numerically demonstrated. The 1 × 4 OMUX consists of four beam splitters and five mirrors. Light propagates in the OMUX employing self-collimation effect. The theoretical transmission spectra at different output ports of OMUX were analyzed with the theory of light interference. Then they were investigated with the finite-difference time-domain (FDTD) simulation technique. The simulation results indicate the cascaded Mach–Zehnder interferometer can work as a 1 × 4 optical multiplexer by selecting path length in the structure properly. For the drop wavelength 1550 nm, the free spectral range of the OMUX is about 24 nm, which almost covers the whole optical communication C-band window. The presented device that has no only a compact size but also a high output efficiency, may have practical applications in photonic integrated circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号