首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discrete component in the noise spectrum of an inefficient supersonic stream flowing into a flooded space is studied experimentally. The effect of a discrete tone on the average parameters of the initial and main portions of the stream is examined. It is found that the lengthl 0 of the supersonic part of the stream decreases linearly as the level L* of the discrete component acting on the base of the stream is increased. It is also shown experimentally that the oscillations in the density jumps at the ends of the first and second cells of the stream take place out of phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 163–166, July–August, 1976.  相似文献   

2.
The results are given of a calculation of laminar flow in a channel of square section and the motion of a turbulent jet from a cruciform nozzle in an ambient flow. To calculate the secondary flows, the field of the transverse velocity is decomposed into irrotational and solenoidal components. The results of the calculation of the flow in the channel are compared with the calculations of other authors and experimental data. To calculate the flow in the turbulent jet, a one-parameter turbulence model is used, and the influence of the inhomogeneity of the distribution of the longitudinal component of the velocity on the components of the Reynolds stress tensor is taken into account. The results of calculation of the flow in the jet behind a cruciform nozzle are compared with experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 36–44, July–August, 1984.  相似文献   

3.
A nonlinear theory is constructed for a thin jet of nonviscous, incompressible, weightless fluid flowing from a nozzle onto the surface of an immobile heavy liquid. The theory is asymptotically (over jet thickness) more accurate than that presented in [1]. Forms of the flow are studied as functions of nozzle, jet, and heavy liquid parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 20–28, November–December, 1976.  相似文献   

4.
The propagation of an underexpanded sonic jet over a flat end face has been experimentally investigated. As distinct from previous studies, the object of investigation is not a free jet, but a jet flowing from a nozzle along a horizontal surface. The total separation of the jet from the surface and its attachment to the end wall are related to the propagation characteristics of underexpanded wall jets. The effect of the total pressure in the jet and the height of the step on the separation of the jet and its attachment to the wall and, moreover, on the principal characteristics of the flow — the pressure in the base region, the extent of the circulation zone, the jet trajectory — is examined. The associated hysteresis effects are studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 61–66, July–August, 1991.  相似文献   

5.
An innovative method is presented for control of an oscillatory turbulent jet in a thin rectangular cavity with a thickness to width ratio of 0.16. Jet flow control is achieved by mass injection of a secondary jet into the region above the submerged primary jet nozzle exit and perpendicular to the primary nozzle axis. An experimental model, a 2-D and a 3-D computational fluid dynamics (CFD) model are used to investigate the flow characteristics under various secondary injection mass flow rates and injection positions. Two-dimensional laser Doppler anemometry (LDA) measurements are compared with results from the CFD models, which incorporate a standard kε turbulence model or a 2-D and 3-D realisable kε model. Experimental results show deflection angles up to 23.3° for 24.6% of relative secondary mass flow are possible. The key to high jet control sensitivity is found to be lateral jet momentum with the optimum injection position at 12% of cavity width (31.6% of the primary nozzle length) above the primary nozzle exit. CFD results also show that a standard kε turbulence closure with nonequilibrium wall functions provides the best predictions of the flow.  相似文献   

6.
The problem of an axisymmetric turbulent electrohydrodynamic jet exhausting from a nozzle into an interelectrode gap is formulated. A numerical method of integrating the system of equations describing this flow is developed. This method is used to investigate three-dimensional effects in the jet (expansion of the jet, reverse flows). The influence on the jet characteristics (currents of the charge carried out of the nozzle, jet diameter, etc.) of the geometrical and electrical parameters and also of purely hydrodynamic factors (level of turbulence, relative velocity of parallel flow, etc.) is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 144–149, September–October, 1980.  相似文献   

7.
At the present time, much attention is devoted to auto-oscillations that arise from the interaction between a supersonic underexpanded jet and an obstacle that it encounters at right angles [1, 2]. There are far fewer data on the pressure pulsations on an obstacle in the absence of auto-oscillations [3–6]. However, in many cases the highest total levels of the pressure pulsations are observed when the barrier is situated at fairly large distances from the nozzle opening and the pressure pulsations have a random nature. We have investigated the pressure pulsations on a plate normal to a supersonic strongly underexpanded jet. The pulsation characteristics were measured for an arrangement of the obstacle when auto-oscillations are absent. We have established dependences that generalize the results of measurement of the pulsation characteristics at both subsonic and supersonic velocities on the jet axis directly in front of the obstacle. We have also investigated the correlation between the pressure pulsations on the plate and external acoustic noise. We have obtained the dependence of the level of the acoustic noise on the value of the maximal pressure pulsations on the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 163–167, January–February, 1980.  相似文献   

8.
We consider the flow formed by the interaction of a supersonic flow and a transverse sonic or supersonic jet blown at right angles to the direction of the main flow through a nozzle whose exit section is in a flat wall. When a gas jet is blown through a circular opening [1] the pressure rises in front of the jet because of the stagnation of the oncoming flow. This leads to separation of the boundary layer formed on the wall in front of the blowing nozzle. The resulting three-dimensional separation zone leads to a sharp increase in the pressure and the heat fluxes to the wall in front of the blowing nozzle, which is undesirable in many modern applications. The aim of the present investigation was to find a shape of the exit section of the blowing nozzle for which there is no three-dimensional separation zone of the boundary layer in front of the blowing nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 162–165, May–June, 1979.  相似文献   

9.
An experimental study is presented which details the turbulence characteristics of a two dimensional offset jet. A single offset ratio (height of the nozzle above the solid parallel wall by nozzle width) of seven is used with a nozzle Reynolds number of 15,000. Measurements are presented in the preattachment jet region made with a dual frequency shifted laser Doppler anemometer. The relative strain rates resulting from curvature on the upper and lower sides of the jet are determined and their effects on the r. m. s. fluctuating velocity components are presented.This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

10.
When an ideal gas flows from a nozzle into a vacuum a substantial part of the jet is occupied by the peripheral zone in which the angle of inclination of the velocity vector W to the axis of symmetry is close to or exceeds /2. The known solutions [1–4] for the far field are unsuitable for describing the jet, since they are valid only at relatively small values of . In this study the author obtains an analytic solution describing in explicit form the shape of the streamlines and the distribution of the parameters in the peripheral zone of a jet flowing into a vacuum from a nozzle with an arbitrary parameter distribution in the exit section. At the nozzle edge the solution describes Prandtl-Mayer flow. As the radial coordinate tends to infinity, the streamlines tend to asymptotes whose angle of inclination depends on the distribution of the parameters in the nozzle exit section, and the local Mach numbers increase without bound.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 145–153, May–June, 1987.  相似文献   

11.
In many practical problems it is essential to know the characteristics of aerodynamic noise generated by a system of parallel supersonic jets. We have conducted an experimental study of aerodynamic noise in the very near acoustic field of two parallel supersonic jets. Our principal objective here was to investigate the discrete component of the pressure fluctuation spectra.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 172–174, September–October, 1976.  相似文献   

12.
Turbulent supersonic submerged air jets have been investigated on the Mach number interval Ma = 1.5–3.4 and on the interval of ratios of the total enthalpies in the external medium and the jet i0 = 0.01 – 1. Oxyhydrogen jets with oxidizer ratios = 0.3–5 flowing from a nozzle at Mach numbers Ma = 1 and 2.4 have also been investigated. When < 1 the excess hydrogen in the jet burns up on mixing with the air. Special attention has been paid to obtaining experimental data free of the influence on the level of turbulence in the jet of the initial turbulence in the nozzle forechamber, shock waves occurring in the nozzle or in the jet at the nozzle exit, and the external acoustic field. The jet can be divided into two parts: an initial part and a main part. The initial part extends from the nozzle exit from the section x, in which the dimensionless velocity on the jet axis um = ux/ud = 0.75. Here, ux is the velocity on the jet axis at distance x from the nozzle exit, and ua is the nozzle exit velocity. The main part of the jet extends downstream from the section x. For the dimensionless length of the initial part xm = x/da, where da is the diameter of the nozzle outlet section, empirical dependences on Ma and i0 are obtained. It is shown, that in the main part of the jet the parameters on the flow axis — the dimensionless velocity and temperature — vary in inverse proportion to the distance, measured in units of length x, and do not depend on the flow characteristics which determine the length of the initial part of the jet. The angles of expansion of the viscous turbulent mixing layer in the submerged heated or burning jet increase with decrease in i0 and Ma and are practically independent of the afterburning process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza. No. 4, pp. 56–62, July–August, 1988.  相似文献   

13.
The experimental investigation of the lateral interaction of the heads of pulsed jets and primary shock waves at various nozzle spacings and pressure ratio numbers is described. The various stages of formation of a composite pulsed jet issuing from a multinozzle block are classified and the flow development mechanisms are explored. It is shown for both a block and a single nozzle the shock wave travels with almost the same velocity, whereas the jet front formed at the exit from a single nozzle moves much more slowly than the jet front formed beyond a nozzle block. Long-lived lateral bursts of gas, whose dimensions are an order greater than those of the jet bursts, are detected. Their long period of existence considerably increases the stabilization time of the steady-state structure and parameters as compared with a single pulsed jet with the same flow rate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 153–159, November–December, 1987.  相似文献   

14.
The flow investigated here appears as a result of the ejecting action of a turbulent jet in conditions when a jet, after emerging from a cylindrical nozzle, impinges into a gas flow channel. Such conditions occur in gas distribution systems. A review of the investigations of flows induced by jets and the solution of a number of problems are contained in [1]. A distinctive feature of the problem investigated below is the stronger development of local characteristics and the specific flow geometry, and also its spatial inhomogeneity. The method of integral transforms is used and formulas for determining the velocity about the nozzle and the flow in the vicinity of jet entry into the gas channel are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 126–133, January–February, 1976.The author thanks T. Kh. Sedel'nikov for valuable suggestions.  相似文献   

15.
This article gives the results of experiments on the measurement of the stagnation temperature of a two-phase jet, issuing from a nozzle. The experiments were made using a mixture of air and aluminum oxide (particle diameter 50) with a ratio of the mass flow rate of the solid phase to the mass flow rate of the gas equal to 0.3–2.5, and at initial temperatures of the mixture of 150–450°C. It follows from the results of the experiments that the stagnation temperature of a two-phase flow considerably exceeds the temperature of the mixture at the inlet of the nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 175–176, July–August, 1970.  相似文献   

16.
A new phenomenon is revealed — the rotation of an ejecting jet, discharging from a nozzle and adhering to the wall of the mixing chamber, in an axisymmetric gas ejector in modes with zero and negative ejection coefficients — and a possible mechanism for its origin is discussed. It is suggested that the rotation of an adhering jet, which induces axisymmetric vortex motion of the gas in the injector, is responsible for the inverse separation of the initially energetically homogeneous stream into heated and cooled sections.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 145–151, November–December, 1977.  相似文献   

17.
This paper reports on the simulation of the near-nozzle region of an isothermal Mach 0.6 jet at a Reynolds number of 100,000 exhausting from a round nozzle geometry. The flow inside the nozzle and the free jet outside the nozzle are computed simultaneously by a high-order accurate, multi-block, large eddy simulation (LES) code with overset grid capability. The total number of grid points at which the governing equations are solved is about 50 million. The main emphasis of the simulation is to capture the high frequency noise generation that takes place in the shear layers of the jet within the first few diameters downstream of the nozzle exit. Although we have attempted to generate fully turbulent boundary layers inside the nozzle by means of a special turbulent inflow generation procedure, an analysis of the simulation results supports the fact that the state of the nozzle exit boundary layer should be characterized as transitional rather than fully turbulent. This is believed to be most likely due to imperfections in the inflow generation method. Details of the computational methodology are presented together with an analysis of the simulation results. A comparison of the far field noise spectrum in the sideline direction with experimental data at similar flow conditions is also carried out. Additional noise generation due to vortex pairing in the region immediately downstream of the nozzle exit is also observed. In a second simulation, the effect of the nozzle exit boundary layer thickness on the vortex pairing Strouhal frequency (based on nozzle diameter) and its harmonics is demonstrated. The limitations and deficiencies of the present study are identified and discussed. We hope that the lessons learned in this study will help guide future research activities towards resolving the pending issues identified in this work.
Presented as AIAA Paper 2006-2499 at 12th AIAA/CEAS Aeroacoustics Conference, 8–10 May 2006, Cambridge, MA, USA.  相似文献   

18.
The results of experimental studies of the influence of the entrance conditions, the particle size, the profiles of the sub- and transonic parts of the nozzle, and the initial concentration on the distribution of the solid discrete phase in the exit cross sections of axisymmetric nozzles were analyzed in [1]. The results of a study of the influence of the profiling of the nozzle and the size of the particles at the nozzle entrance on the formation of the distribution fields of the discrete liquid phase and its size at the cut of a plane nozzle are presented in the present report, which is a continuation of [1]. The experimental data presented permit a deeper understanding of the mechanism of flow of a two-phase medium in a nozzle and are required for an evaluation of efficiency of the calculation methods.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 167–170, March–April, 1978.  相似文献   

19.
A study is made of the flow resulting from the interaction of a supersonic stream with a transverse sonic or supersonic jet blown at right angles to the direction of the main stream through a nozzle whose exit section is situated on a flat wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 137–139, May–June, 1981.  相似文献   

20.
A numerical scheme is proposed for calculating the steady three-dimensional flow in the subsonic and transonic regions of interaction of a freely expanding jet and an infinite flat obstacle at angles of attack up to 20 ° and the end of a cylinder placed relative to the jet axis at a distance up to ten nozzle radii. Results of calculations are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 22–27, January–February, 1981.We thank A. P. Zyuzin for making a number of calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号