首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of 90Sr in environmental solid samples is a challenging task because of the presence of so many other radionuclides in samples of interest. This problem was dealt with by radiochemical separation of strontium followed by yttrium separation and Cerenkov counting of the high-energy ??-particle emissions of 90Y in order to quantitate 90Sr. In this work, an improved method is described for the determination of 90Sr in soil samples, through the separation of the daughter 90Y at equilibrium. The procedure is based on the HDEHP solvent extraction in combination with liquid scintillation spectrometry (LSS). A low background Quantulus has been optimized for low level counting of Cerenkov radiation emitted by the hard ??-emitter 90Y. The analytical quality of the method has been checked by analyzing IAEA Soil-375 reference materials. The analytical method has also been successfully applied to the determination of 90Sr for moss-soil samples in inter-laboratory exercises through IAEA??s ALMERA network. The chemical recovery for 90Y extraction ranged from 80 to 85% and the counting efficiency was 73% in the window 25?C400 keV.  相似文献   

2.
An improved and rapid method is described for the determination of 90Sr in environmental samples, through the separation of the daughter 90Y at equilibrium. The procedure is based on the HDEHP solvent extraction in combination with liquid scintillation spectrometry (LSS). A low background QuantulusÔ has been optimized for low level counting of Cerenkov radiation emitted by the hard b-emitter 90Y. The counting efficiency was 60% and the background 0.53 cpm. The reliability and reproducibility of the method have been checked using IAEA reference materials. The chemical recovery for 90Y extraction ranges from 83 to 90%.  相似文献   

3.
A rapid determination method in which beta-ray spectrometry was combined with solid phase extraction using Sr Rad Disk was developed for the determination of 89Sr and 90Sr in low-level radioactive waste. Various amounts of 89Sr, 90Sr, and 90Y retained by the Sr Rad Disk was measured by a beta-ray spectrometer, and it was found that both 89Sr and 90Sr were simultaneously determined with <30% error (2σ) at 89Sr/90Sr radioactivity ratio of 0.3 to 45. The present method was successfully applied to actual radioactive liquid waste samples arising from nuclear facilities in Japan Atomic Energy Agency. Strontium was simply separated from interfering nuclides such as 137Cs and 154Eu, and matrix components by the Sr Rad Disk, and the results obtained by beta-ray spectrometry was in good agreement with that of the conventional analysis.  相似文献   

4.
This study presents a rapid and quantitative sequential radiochemical separation method for Pu, U, Am and Sr isotopes in environmental samples with extraction chromatographic resins. After radionuclides were leached from the samples with 6 M HNO3, Pu and U isotopes were adsorbed onto the UTEVA column and Am isotopes were adsorbed onto the TRU column connected with the UTEVA column. Also, 90Sr was adsorbed onto the Sr column connected with the TRU column. Pu and U isotopes were purified from other nuclides through the UTEVA column. In addition, Am isotopes were separated from other nuclides with the TRU column. Finally, 90Sr was purified with the Sr resin. After α source preparation for the purified Pu, U and Am isotopes with micro-coprecipitation method, Pu, U and Am isotopes were measured using alpha spectrometry. On the other hand, 90Sr was measured using a low level liquid scintillation counter. The radiochemical procedure for Pu, U, Am and Sr nuclides investigated in this study has been applied to environmental samples after validating the simulated samples.  相似文献   

5.
In this research, for the first time Nb and Ge were doped into titanosilicate nanoparticles up to 25% simultaneously. Crystalline phases and morphology of the synthesized samples were studied by X-ray diffraction (XRD) method and scanning electron microscope (SEM), respectively. Elemental analysis of the samples was performed using X-ray fluorescence (XRF) and Energy dispersive X-ray (EDX) techniques. Surface area of the samples was measured by BET method. Ion exchange potential of the synthesized samples for Sr2+ and Cs+ and effective parameters such as concentration, temperature, time, and pH were investigated. In addition,137Cs and 90Sr radio nuclides absorption in the best appropriate sample was examined. The selectivity of the samples for absorption of 137Cs and 90Sr was studied by gamma spectroscopy, liquid scintillation spectrometry, and atomic absorption spectroscopy methods. The obtained results showed that the prepared samples had good potential for absorption of 137Cs and 90Sr from the model solution. The sample containing equal amount of niobium and germanium, removed completely the 137Cs within the waste water of Tehran nuclear reactor and 90Sr in the desired solution.  相似文献   

6.
This study presents analytical methods for the determination of gross beta, 90Sr, 226Ra and Pu isotopes using samples in the IAEA-TEL-2015-04 ALMERA Proficiency Test exercise. Samples for gross beta were prepared by evaporation and then analyzed using a gas proportional counter. 90Sr in the liquid sample was concentrated as SrCO3 precipitates and purified by Sr resin. Pu isotopes and 90Sr in the soil sample were extracted from the sample by mineral acid leaching and separated using TEVA and Sr resin, respectively. Pu isotopes were determined by alpha spectrometry and 90Sr were determined with a liquid scintillation counter. Radium in the soil sample was extracted by LiBO2 fusion, and the radon-emanation method using LSC was applied for the determination of 226Ra.  相似文献   

7.
A unique procedure permitting the determination of90Sr and actinides in the same protion of sample, with good chemical yields of all analytes, is presented. Animal tissue samples containing bone are ashed, spiked with2 3 2U,2 4 2Pu,2 4 3Am and8 5Sr and solubilized. The actinides and strontium are gathered and separated by a series of coprecipitations with, cerium hydroxide and cerium fluoride. Actinide separation and determination and purification and determination of90Sr are accomplished by a combination of several well-known procedures. The laboratory method consistently results in high chemical yields of all the analytes and overcomes interferences from phosphates and calcium.  相似文献   

8.
The concentrations of137Cs were determined by in 11 sediment samples, collected along the Romanian sector of the Danube river and the Black Sea coast during 1994 γ-ray spectrometry. The concentrations of90Sr in the same sediment samples were determined by β-counting of the90Y oxalate, precipitated after strontium separation using a strontium extraction chromatography column. The concentration distributions of137Cs and90Sr are compared with the238Pu and239,240Pu concentration distributions in the same samples, reported in a previous paper. The accumulation potential of137Cs,90Sr and plutonium isotopes in the river and sea sediments analysed is discussed.  相似文献   

9.
The direct estimation of 90Sr by β counting from a mixture of other β and γ emitter is often difficult due to the efficiency variation among the β-emitters and the unknown nature of the sample. This paper deals with use of a combination of β and γ spectrometry measurements in estimating the activity of 90Sr, pure β emitter from a mixture of other β–γ emitters in water samples. This procedure offers a simple, easy to use, rapid and a reliable method for 90Sr estimation as an alternative to the tedious radiochemical separation procedure in this specific case.  相似文献   

10.
Rapid bioassay methods for 90Sr in urine samples are needed to provide an early estimation of possible internal dose resulting from exposure to radiostrontium in the event of a radiological and nuclear emergency. In this work, a fast column separation method followed by liquid scintillation counting for detection of 90Sr in urine was developed. Replicate spike and blank samples were analyzed for performance evaluation of the method. Using this method, a detection limit of ~10 Bq L?1 for 90Sr can be achieved with a sample analysis turn-around time of 4 h for a set of 12 samples. The method is adequate to meet the radiobioassay acceptance criteria and is suitable for quick dose assessment of 90Sr exposure following a radiation emergency.  相似文献   

11.
This work describes a procedure for the isolation of 90Sr and 210Pb from deer bones by anion exchange methods and their sequential measurement by LSC. To prevent collection of Pb on the Sr·Spec® resin we first separated Pb on a Dowex anion exchange column. Sr, which is not held back on the Dowex column, was then purified using Sr·Spec® resin: first Ca and the Ra isotopes were eluted with 3 M HNO3 and then Sr was eluted with distilled water. With this 2-steps procedure pure 210Pb and 90Sr spectra can be achieved. The chemical yield of both steps was determined by ICP-MS. Our 90Sr results show satisfying agreement with data obtained by a shorter Sr·Spec® method and also by the “classical” 90Sr determination using fuming nitric acid. Also 210Pb results were checked by re-measuring bone samples with already known 210Pb activities. Further our method was verified on the reference sample IAEA-A-12.  相似文献   

12.
Activity concentrations of 90Sr in samples of wild boar bones hunted in different regions of Slovakia were determined. Molecular recognition technology product IBC´s AnaLig®Sr-01 and tributyl phosphate were used for strontium determination. From 7 to 10 g of bone ash was used for 90Sr analysis. Both separation methods were statistical tested and compared. The presented results were evaluated as correct for all experimental data for 90Sr determination in ash bone samples. Activity concentrations of 90Sr in bones were in the range of (4.5–69.0) Bq kg?1.  相似文献   

13.
A method is presented for the determination of 90Sr in environmental samples by direct milking of 90Y. Pyridine-2,6-dicarboxylic acid forms an anionic complex with yttrium which is retained on an anionic resin. Most of the matrix elements are washed out of the column as neutral or uncomplexed species and yttrium is eluted by increasing the ionic force of the eluent solution. This method gives yttrium recoveries between 65% to 85% for soil, grass, milk and bone samples with very high radiochemical purity (90Y average half-life of 66±4 hours) and a detection limit of 0.3 Bq/kg of soil. The method supports a calcium content up to 3 g per sample without any decrease in yttrium yield, allowing the measurement of milk, milk-teeth and bone samples with no concentration step in one day.  相似文献   

14.
Strontium-90 (90Sr) is one of the most hazardous radionuclides, and it contributes to radiation exposure by ingestion. The routine determination of 90Sr in marine biological samples is highly desirable given the development of the nuclear power industry. A fast, simple, and low-detection-limit method was developed for the measurement of 90Sr in marine biological samples based on determining 90Y by means of coprecipitation and solvent extraction with bis-2-ethylhexyl-phosphoric acid (HDEHP) in n-heptane. The interfering 210Bi is removed using Bi2S3 precipitation. The separation and purification of eight samples per day can be accomplished through this method. The detection limit of 90Sr for this method is 0.10 Bq/kg (ash weight). The radiochemical procedure was validated by fitting the decay curve of the sample source and by the determination of 90Sr standards.  相似文献   

15.
Strontium-90 (90Sr) is a ubiquitous contaminant at nuclear facilities, found at high concentrations in spent nuclear fuel and radioactive waste. Due to its long half-life and ability to be transported in groundwater, an accurate method for measuring 90Sr in water samples is critical to the monitoring program of any nuclear facility. To address this need, a rapid procedure for sequential separation of Sr/Y was developed and tested in groundwater samples collected from an area of riverbed affected by a 90Sr groundwater plume. Sixteen samples, plus spike and water blanks, were analyzed. Five different measurements were performed to determine the 90Sr and yttrium-90 (90Y) activities in the samples: direct triple-to-double-coincidence ratio (TDCR) Cherenkov counting of 90Y, liquid scintillation (LS) counting for 90Sr following radiochemical separation, LS counting for 90Y following radiochemical separation, Cherenkov counting for 90Y following radiochemical separation and LS counting of the Sr samples for 90Y in-growth. The counting was done using a low-level Hidex 300SL TDCR counter. Each measurement method was compared for accuracy, sensitivity and efficiency. The results following Cherenkov counting and radiochemical separation were in very good agreement with one another.  相似文献   

16.
A method in which90Y the daughter product of90Sr decay is extracted by tributyl phosphate (TBP) from ashed powdered milk is described. The90Y which is in equilibrium with90Sr is back-extracted into the aqueous phase and coprecipitated with milligram amounts of ferric hydroxide. The proposed procedure makes it possible to obtain thin planar sources convenient for low level gas counters. The overall detection efficiency of 45.5% for90Y (including chemical recovery of yttrium) was achieved. The detection limit for 200 g powdered milk samples and 10 000 s counting time was 0.065 Bq·kg–1. The concentration of90Sr in three-year old samples (after Chernobyl accident) ranged from 0.81 to 1.31 Bq·kg–1.  相似文献   

17.
A methodology for the determination of 90Sr in low- and intermediate-level radioactive wastes from nuclear power plants is presented in this work. It is a part of a methodology developed for the sequential radiochemical separation of radionuclides difficult-to-measure directly by gamma spectrometry in these radioactive wastes. The separation procedure was carried out using precipitation and extraction chromatography with Sr Resin, from Eichrom and the 90Sr was measured by liquid scintillation counting (LSC). Optimum conditions for the pretreatment, separation and LSC measurements were determined using simulated samples, which were prepared using standard solutions and carriers. The procedure showed to be rapid and achieved a good chemical yield, in the range 60–90%, and a detection limit of 6.0 × 10−4 Bq g−1. The method was also tested by participation in a national intercomparison program, with aqueous samples, with good agreement of results.  相似文献   

18.
A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified 90Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and 90Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.  相似文献   

19.
For rapid determination of 89Sr and 90Sr in food, isocratic ion chromatography used for Sr isolation and purification is integrated in a complete analytical system comprising sample preparation, incineration, dissolution, phosphate precipitation for alkali/alkaline carth separation, and Sr specific extraction chromatography on crown ether basis for Ca/Sr separation. Strontium-89 and 90Sr are determined by liquid scintillation spectrometry after carbonate precipitation. The components of the mixed spectra obtained are calculated by the computerized spectra subtraction method. Two days plus measuring time are required for single, three for double analysis. The limit of detection for 89Sr and 90Sr is ca. 0.1 Bq·kg–1, related to the fresh produce.  相似文献   

20.
Strontium-90 is one of the most important fission products generated in nuclear industry. In the research field concerning nuclear waste disposal in deep geological environment, it is necessary to quantify accurately and precisely its concentration (or the 90Sr / 238U atomic ratio) in irradiated fuels. To obtain accurate analysis of radioactive 90Sr, mass spectrometry associated with isotope dilution is the most appropriated method. But, in nuclear fuel samples the interference with 90Zr must be previously eliminated. An inductively coupled plasma mass spectrometer with multiple collection, equipped with an hexapole collision cell, has been used to eliminate the 90Sr / 90Zr interference by addition of oxygen in the collision cell as a reactant gas. Zr+ ions are converted into ZrO+, whereas Sr+ ions are not reactive.A mixed solution, prepared from a solution of enriched 84Sr and a solution of enriched 235U was then used to quantify the 90Sr / 238U ratio in spent fuel sample solutions using the double isotope dilution method. This paper shows the results, the reproducibility and the uncertainties that can be obtained with this method to quantify the 90Sr / 238U atomic ratio in an UOX (uranium oxide) and a MOX (mixed oxide) spent fuel samples using the collision cell of an inductively coupled plasma mass spectrometer with multiple collection to perform the 90Sr / 90Zr separation. A comparison with the results obtained by inductively coupled plasma mass spectrometer with multiple collection after a chemical separation of strontium from zirconium using a Sr spec resin (Eichrom) has been performed. Finally, to validate the analytical procedure developed, measurements of the same samples have been performed by thermal ionization mass spectrometry, used as an independent technique, after chemical separation of Sr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号