共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
With the rapid development of new energy industry, many universities have launched comprehensive experiments about preparation, characterization, battery assembly and performance testing of lithium-ion battery materials, and have achieved good teaching results. However, due to the limitations of equipment cost and experimental time, it is impossible to meet all experimental needs. We use virtual simulation technology to make students familiar with the basic operation skills of electrochemical experiments and the use of related instruments. Through the virtual experiment about the complete process of lithium-ion batteries including preparation of positive electrode materials, assembly of and performance testing during, we established a new teaching model of online and offline integration and improved the experiment efficiency and success rate in actual operation. At the same time, this model broaden students' vision and cultivate students' practical ability and innovative awareness. 相似文献
3.
硅材料作为锂离子电池负极材料具有比容量大的优点,是高容量锂离子负极材料的研究热点之一。论文综述了近年来锂离子电池硅负极材料的研究进展。分别对硅和含硅材料作为锂离子电池负极材料的发展过程、充放电特性、储锂机理及影响其储锂的各因素进行了分析和总结,并对其存在的问题进行了分析。探讨了采用不同复合物、不同制备方法和合成硅化物等改性方法来提高其循环性能的可行性。指出纳米硅基复合物将是硅负极材料最有希望的发展方向。 相似文献
4.
锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。 相似文献
5.
6.
7.
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。 相似文献
8.
9.
10.
综合评述了低温等离子体技术的基本原理、 常用方法及其在锂离子电池材料领域中的研究进展, 重点评述了等离子体技术在锂离子电池正极、 负极、 隔膜及固态电解质等重要组分中的材料制备与表面改性方面的主要研究结果和应用优势, 并对其所面临的挑战和未来的应用方向进行了展望. 相似文献
11.
将CR2032型锂离子电池的制作及电化学性能测试实验设计为大学化学本科生的综合实验并将其应用于本科教学中,建立起基于锂离子电池用正极材料的合成、表征、电极制备及电池组装和性能测试的综合性开放实验。实验以无机材料制备为实验基础,以电化学原理为理论基础,通过文献查阅、确立合成路线、材料制备及表征、锂离子电池制作与测试等多项综合实验内容,使学生了解目前常见的正极材料种类、合成方法、电池的基本结构以及电池性能的测试方法。在教学过程中以学生主动探索为主体,培养学生的科学探究素养,锻炼学生查阅文献、自主设计实验和合作开发的能力。 相似文献
12.
新型锂离子电池三维结构泡沫NiO电极的制备及电化学性能 总被引:3,自引:2,他引:1
通过固相氧化方法,以三维结构泡沫镍为基体和金属镍源,制备了三维结构泡沫氧化镍负极。XRD和SEM结果表明,经500℃氧化处理,泡沫镍基体上形成了NiO微米级的致密活性氧化层。通过充放电测试和循环伏安测试研究了电极的电化学性能,结果表明,三维结构泡沫氧化镍在放电电位区间0.05~3.2VvsLi/Li+,0.2C倍率下充放电,初始容量损失为20%,且经40次循环后,质量比容量为950mAh·g-1,三维泡沫氧化镍电极具有优异的循环容量保持性能。三维泡沫氧化镍具有的大的活性表面积,降低了界面反应的极化,从而提高了NiO电极的倍率放电性能。 相似文献
13.
14.
15.
16.
17.
18.
The goal of this article is to highlight crucial breakthroughs in solid-state ionic conduction in borohydrides for battery applications. Borohydrides, Mz+BxHy, form in various molecular structures, for example, nido-M+BH4; closo-M2+B10H10; closo-M2+B12H12; and planar-M6+B6H6 with M = cations such as Li+, K+, Na+, Ca2+, and Mg2+, which can participate in ionic conduction. This overview article will fully explore the phase space of boron–hydrogen chemistry in order to discuss parameters that optimize these materials as solid electrolytes for battery applications. Key properties for effective solid-state electrolytes, including ionic conduction, electrochemical window, high energy density, and resistance to dendrite formation, are also discussed. Because of their open structures (for closo-boranes) leading to rapid ionic conduction, and their ability to undergo phase transition between low conductivity and high conductivity phases, borohydrides deserve a focused discussion and further experimental efforts. One challenge that remains is the low electrochemical stability of borohydrides. This overview article highlights current knowledge and additionally recommends a path towards further computational and experimental research efforts. 相似文献
19.
Guo B Kong Q Zhu Y Mao Y Wang Z Wan M Chen L 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(52):14878-14884
Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. 相似文献
20.
After preparing the precursor by a liquid precipitation method, a series of tin-zinc composite oxides with different components
and structures were synthesized as the anode materials for lithium ion batteries when the precursor was pyrolyzed at different
temperatures. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical
measurements. The reversible capacity of amorphous ZnSnO3 is 844 mA · h/g in the first cycle and the charge capacity is 695 mA · h/g in the tenth cycle. The reversible capacity of
ZnO · SnO2 is 845 mA · h/g in the first cycle and the charge capacity is 508 mA · h/g in the tenth cycle. The reversible capacity of
SnO2 · Zn2SnO4 is 758 mA · h/g in the first cycle and the charge capacity is 455 mA · h/g in the tenth cycle. Results show that amorphous
ZnSnO3 exhibits the best electrochemical property among all of the tin-zinc composite oxides. With the formation of crystallites
in the samples, the electrochemical property of the tin-zinc composite oxides decreases.
Translated from Chem J Chin Univ, 2006, 27(12): 2252–2255 [译自: 高等学校化学学报] 相似文献