首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A trypsin immobilized enzyme microreactor was successfully prepared in capillary for studying enzyme kinetics of trypsin and online screening of trypsin inhibitors from traditional Chinese medicine through capillary electrophoresis. Trypsin was immobilized on the inner wall at the inlet of the capillary treated with polydopamine. The rest of the capillary was used as a separation channel. The parameters including the separation efficiency and the activity of immobilized trypsin were comprehensively evaluated. Under the optimal conditions, online screening of trypsin inhibitors each time can be carried out within 6 min. The Michaelis–Menten constant of immobilized trypsin was calculated to be 0.50 mM, which indicated high affinity of the immobilized trypsin for the substrate. The half‐maximal inhibitory concentration of known inhibitor of benzamidine hydrochloride hydrate as a model inhibitor was 13.32 mM. The proposed method was successfully applied to screen trypsin inhibitors from 15 compounds of traditional Chinese medicine. It has been found that baicalin showed inhibitory potency. Molecular docking study well supported the experimental result by exhibiting molecular interaction between enzyme and inhibitors.  相似文献   

3.
基于石墨烯优良的物化性能,利用层层组装法将氧化石墨烯修饰于石英毛细管内壁,制备了氧化石墨烯基质的毛细管电色谱,通过电渗流、拉曼光谱等对其进行表征。在此基础上,基于离子键合法将胰蛋白酶固定于毛细管电色谱柱头,制备胰蛋白酶微反应器。两者结合构成毛细管电色谱胰蛋白酶微反应器。实验结果显示,氧化石墨烯作为基质既可提高样品的分离效率,还能促进胰蛋白酶的催化性能。氧化石墨烯修饰的毛细管电色谱对N-苯甲酰-L-精氨酸乙酯盐酸盐(BAEE)和N-苯甲酰-L-精氨酸(BA)混合物的分离度从裸毛细管的3.70提升至4.71,而其固定化酶活性(米氏常数K_m=1.10 mmol/L,最大反应速率V_(max)=0.32 mmol·L~(-1)·s~(-1))也明显优于裸毛细管(K_m=109.77 mmol/L,V_(max)=0.000 46 mmol·L~(-1)·s~(-1))。利用所制备的微反应器从10种中药材中筛选胰蛋白酶抑制剂活性成分的药材,结果发现三七和大黄中均存在胰蛋白酶抑制剂活性成分。  相似文献   

4.
Liu AL  Zhou T  He FY  Xu JJ  Lu Y  Chen HY  Xia XH 《Lab on a chip》2006,6(6):811-818
We firstly transformed the traditional Michaelis-Menten equation into an off-line form which can be used for evaluating the Michaelis-Menten constant after the enzymatic reaction. For experimental estimation of the kinetics of enzymatic reactions, we have developed a facile and effective method by integrating an enzyme microreactor into direct-printing polymer microchips. Strong nonspecific adsorption of proteins was utilized to effectively immobilize enzymes onto the microchannel wall, forming the integrated on-column enzyme microreactor in a microchip. The properties of the integrated enzyme microreactor were evaluated by using the enzymatic reaction of glucose oxidase (GOx) with its substrate glucose as a model system. The reaction product, hydrogen peroxide, was electrochemically (EC) analyzed using a Pt microelectrode. The data for enzyme kinetics using our off-line form of the Michaelis-Menten equation was obtained (K(m) = 2.64 mM), which is much smaller than that reported in solution (K(m) = 6.0 mM). Due to the hydrophobic property and the native mesoscopic structure of the poly(ethylene terephthalate) film, the immobilized enzyme in the microreactor shows good stability and bioactivity under the flowing conditions.  相似文献   

5.
通过在毛细管内层叠层组装纳米沸石并固定脂肪酶来构建纳米沸石修饰的固定化酶微反应器通道,将纳米沸石良好的生物相容性和高的酶固定能力与微反应器反应效率高、扩散传质快等优点相结合. 以对硝基苯棕榈酸酯的水解作为探针反应对该微反应器内固定化酶催化水解反应动力学进行了研究和计算,并与普通反应器内同样的反应进行比较. 通过对比米氏方程参数,证实在微反应器内酶催化水解反应效率可比普通反应器内提高3倍以上并可提高酶和反应底物的亲和能力.  相似文献   

6.
The inhibitory constants of complexes of trypsin and its soluble or immobilized inhibitors were determined from volumes in which trypsin emerged from the column of its immobilized inhibitor (p-aminobenzamidine coupled through hexamethylenediamine to hydroxyalkyl methacrylate gel, Spheron) eluted by solutions of soluble trypsin inhibitors (benzylamine, benzoyl-L-arginine, N-butylamine, benzamidine, and p-aminobenzamidine). The values of constants obtained by affinity chromatography in the zonal and frontal analysis arrangement were in good agreement and in accordance with data obtained kinetically. The plot of l/(Vi-V0) versus l/KI (determined by zonal analysis) or of Vi versus KI(V-Vi) (determined by frontal analysis) for identical concentrations of various inhibitors was linear. The fact that the dissociation constant of the complex of trypsin and immobilized p-aminobenzamidine (1.6-3.7 x 106 M) is lower than the dissociation constant of the complex of trypsin and free p-aminobenzamidine (1.9 x 10-5 M) seems to indicate possibilities of nonspecific adsorption in the binding of trypsin to p-aminobenzamidine-NH2-Spheron. Submitted as RNDr.-Thesis at the Faculty of Natural Sciences, Charles University, Prague, May 1977.  相似文献   

7.
In this study, a capillary electrophoresis‐based online immobilized enzyme microreactor was developed for evaluating the inhibitory activity of green tea catechins and tea polyphenol extracts on trypsin. The immobilized trypsin activity and other kinetic parameters were evaluated by measuring the peak area of the hydrolyzate of chromogenic substrate S‐2765. The results indicated that the activity of the immobilized trypsin remained approximately 90.0% of the initial immobilized enzyme activity after 30 runs. The value of Michaelis–Menten constant (Km) was (0.47 ± 0.08) mM, and the half‐maximal inhibitory concentration (IC50) and inhibition constant (Ki) of benzamidine were measured as 3.34 and 3.00 mM, respectively. Then, the inhibitory activity of four main catechins (epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate) and three tea polyphenol extracts (green tea, white tea, and black tea) on trypsin were investigated. The results showed that four catechins and three tea polyphenol extracts had potential trypsin inhibitory activity. In addition, molecular docking results illustrated that epigallocatechin gallate, epicatechin gallate, epicatechin, and epigallocatechin were all located not only in the catalytic cavity, but also in the substrate‐binding pocket of trypsin. These results indicated that the developed method is an effective tool for evaluating inhibitory activity of catechins on trypsin.  相似文献   

8.
The development of an immobilized enzyme reactor (IMER) based on tyrosinase immobilized on aminopropyl-controlled pore glass (AP-CPG) for the removal of phenols from model aqueous solutions was reported. To elucidate the influence of the substrate nature, the apparent (V'max, K'm) and the inherent (Vmax, Km) Michaelis-Menten constants were determined by Lineweaver-Burk method and the external diffusional contributions on measured enzyme activities were removed by a graphical method. The dephenolization process was realized by recycling the phenol solutions through the bioreactor connected to a chitosan trap in order to remove the colored quinone-type products of the tyrosinase reactions. The results indicated that a complete removal of phenol derivatives in the range of 150-300 min, with the exception of 60% removal for phenol reached in 400 min, was obtained. The observed sequence: cresol > 4-methylcathecol > catechol > 4-Cl-phenol phenol was in accordance to the V'max/K'm values.  相似文献   

9.
The main point was the search for a proper carrier and the kind of carrier activation for trypsin (EC 3.4.21.4) immobilization. The acrylic and cellulose-based carriers were specially prepared in that they possessed the most often used anchor groups: -OH, -NH(2), DEAE and/or -COOH. The immobilization procedures were selected to apply mainly to protein amine groups and appropriate anchor groups on the carrier. As activity tests low (N-benzoyl-dl-arginine-p-nitroanilide, BAPNA) and high (casein) molecular weight substrates were used. It was found, as a rule, that trypsin bound to -COOH groups with the help of carbodiimide was less active and that the amount of bound protein and measured activity (BAPNA) are considerably higher when protein is immobilized via divinyl sulfone. Both rules were observed irrespective of the nature of the polymer matrix. Both types of carriers were found suitable for trypsin immobilization and they were far better than the corresponding Eupergit C-bound enzyme preparations. Taking into account storage stability and activity for both substrates, the divinylsulfone linkage formed between unmodified Granocel and trypsin was the most effective method for the enzyme immobilization. For this preparation, BAPNA and casein conversion, thermal stability at 60 degrees C and estimated kinetic parameters were compared with those obtained for the native enzyme. It was shown that mass transport limitations could be effectively eliminated by suitable conditions and immobilized trypsin was considerably more stable. The values k(cat)/K(m) indicated that the immobilized enzyme was even better as amidase activity was regarded and its potential for protein hydrolysis was only less than twice.  相似文献   

10.
The covalent immobilization of trypsin onto poly[(methyl methacrylate)-co-(ethyl acrylate)-co-(acrylic acid)] latex particles, produced by a soap-free emulsion polymerization technique, was carried out using the carbodiimide method. The catalytic properties and kinetic parameters, as well as the stability of the immobilized enzyme were compared to those of the free enzyme. Results showed that the optimum temperature and pH for the immobilized trypsin in the hydrolysis of casein were 55 degrees C and 8.5, both of which were higher than that of the free form. It was found that K(m) (Michaelis constant) was 45.7 mg . ml(-1) and V(max) (maximal reaction rate) was 793.0 microg . min(-1) for immobilized trypsin, compared to a K(m) of 30.0 mg . ml(-1) and a V(max) of 5 467.5 microg . min(-1) for free trypsin. The immobilized trypsin exhibited much better thermal and chemical stabilities than its free counterpart and maintained over 63% of its initial activity after reusing ten times.  相似文献   

11.
In gene therapy and DNA vaccination, RNA removal from DNA preparations is vital and is typically achieved by the addition of ribonuclease into the sample. Removal of ribonuclease from DNA samples requires an additional purification step. An alternative is the implementation of immobilized ribonuclease. In our work, ribonuclease was covalently coupled onto the surface of methacrylate monoliths via epoxy or imidazole carbamate groups. Various immobilization conditions were tested by changing immobilization pH. Ribonuclease immobilized on the monolith via imidazole carbamate groups at pH 9 was found to be six times more active than the ribonuclease immobilized on the monolith via epoxy groups. Under optimal immobilization conditions the Michaelis-Menten constant, Km, for cytidine-2,3-cyclic monophosphate, and turnover number, k3 were 0.52 mM and 4.6s(-1), respectively, and mirrored properties of free enzyme. Enzyme reactor was found to efficiently eliminate RNA contaminants from DNA samples. It was active for several weeks of operation and processed 300 column volumes of sample. Required residence time to eliminate RNA was estimated to be around 0.5 min enabling flow rates above 1 column volume per min.  相似文献   

12.
壳聚糖固定化胰蛋白酶的研究   总被引:14,自引:0,他引:14  
以壳聚糖为载体,戊二醛为交联剂,采用两种方法制备了固定化胰蛋白酶。考察了固定化反应中pH值,戊二醛的浓度,以及给酶量对固定化胰蛋白酶活力的影响,并研究了这两种固定化胰蛋白酶的性质。实验结果表明,以戊二醛预交联的网状壳聚糖为载体制备的固定化胰蛋白酶具有更加优良的性能,在最佳固定化反应条件下,酶的活性加收率可达56%。此固定化胰蛋白酶的最适pH为7.0-8.5,最适温度为60℃,Km值为2.52mol/L,固定化胰蛋白酶表现出较好的热稳定性,pH贮存稳定性,以及在乙醇水溶液中的稳定性。  相似文献   

13.
Amyloglucosidase was covalently immobilized using two hydrophilic prepolymers: Hypol FHP 2002 (creates foams) and Hypol FHP 8190H (creates gels). The foamable prepolymer was superior as a support for enzyme immobilization. The percent activity immobilized in the polyurethane foams was 25 +/- 1.5%. Large substrates (greater than 200,000 daltons in mol wt) were hydrolyzed as effectively as smaller ones by the immobilized enzyme. The Km value of the foam-immobilized enzyme increased from 0.76 mg/mL (free) to 0.86 mg/mL (immobilized), whereas the Vmax dropped from 90.9 (free) to 12.4 nmol glucose/min/mL (immobilized). The long-term (2 mo) storage stability of amyloglucosidase was enhanced by immobilization in foams (70% activity retained; free enzyme only retained 50%). Immobilization also improved the enzyme stability to various denaturing agents (sodium chloride, urea, and ethanol). The immobilized enzyme exhibited increased stability compared to the free enzyme at high temperatures (95 degrees C). Both glycogen and starch could be utilized by the immobilized enzyme, indicating that this technique could prove useful for starch hydrolysis.  相似文献   

14.
Covalently linked films of the ferric heme protein myoglobin and poly-L-lysine on pyrolytic graphite electrodes reacted with tert-butylhydroperoxide (tBuOOH) to form ferryloxy protein species according to Michaelis-Menten enzyme kinetics. Rotating disk voltammetry data obtained in microemulsions, micellar solution, and buffers revealed a strong influence of water phase acidity on kinetic parameters. Microemulsion and surfactant type had a much smaller influence on reaction kinetics, possibly because the reaction takes place entirely in a water environment surrounding Mb in the films in all fluids. A large apparent Michaelis kcat in microemulsions with neutral water phases was offset by much weaker binding as shown by larger protein-substrate dissociation constants (Km). Acidic SDS microemulsions and pH 2 buffer provided the most efficient reaction conditions as judged by the ratio kcat/Km. Apparent kinetic constants are most likely governed by acidity-controlled protein conformations and their binding with tBuOOH in the intermediate protein-substrate complex.  相似文献   

15.
Adenosine diphosphate-ribosyl cyclase (ADP-ribosyl cyclase) is a ubiquitous enzyme in eukaryotes that converts NAD+ to cyclic-ADP-ribose (cADPR) and nicotinamide. A quantitative assay for cADPR was developed using capillary electrophoresis to separate NAD+, cADPR, ADP-ribose, and ADP with UV detection (254 nm). Using this assay, the apparent Km and Vmax for Aplysia ADP-ribosyl cyclase were determined to be 1.24+/-0.05 mM and 131.8+/-2.0 microM/min, respectively. Boric acid inhibited ADP-ribosyl cyclase non-competitively with a Ki of 40.5+/-0.5 mM. Boric acid binding to cADPR, determined by electrospray ionization mass spectrometry, was characterized by an apparent binding constant, KA, of 655+/-99 L/mol at pH 10.3.  相似文献   

16.
A partially purified phophotriesterase was successfully immobilized onto nylon 6 and 66 membranes, nylon 11 powder, and nylon tubing. Up to 9000 U of enzyme activity was immobilized onto 2000 cm2 of a nylon 6 membrane where 1 U is the amount of enzyme necessary to catalyze the hydrolysis of 1.0 mumol of paraoxon/min at 25 degrees C. The nylon 66 membrane-bound phosphotriesterase was characterized kinetically where the apparent Km value for the immobilized enzyme was 0.35 mM. This is 5-6 times higher than that observed for the soluble enzyme. However, nylon immobilization limited the maximum rate of paraoxon hydrolysis to less than 10% of the value measured for the soluble enzyme. The addition of the cosolvent, methanol, resulted in an increase in the apparent Km value for paraoxon hydrolysis but concentrations up to 40% had no negative effect on the catalytic effectiveness with the soluble or immobilized phosphotriesterase. Based on the kinetic analysis, methanol appears to be a competitive inhibitor for both forms of enzyme. The nylon powder immobilized enzyme was shown to be stable for at least 20 mo. The immobilization of the phosphotriesterase onto nylon provides a practical method for the detoxification of organophosphate pesticides.  相似文献   

17.
This study investigated the properties of immobilized β-galactosidase on polymeric beads having Schiff base. Polystyrene microspheres attached L-Alanine (FMPS-Ala) was synthesized from (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) and L-alanine by condensation. A coordinasyon polymer involving Ni2+(FMPS-Ala-Ni) was produced with the template method and characterized. β-galactosidase was immobilized onto the (FMPS), (FMPS-Ala) and (FMPS-Ala-Ni) complexes via covalent bonds. The Km/Vmax values were calculated as 0.343 mM/0.0259 mM min?1for free β-galactosidase and 0.104 mM/0.0126 mM min?1, 0.0617 mM/0.0417 mM min?1and 0.210 mM/0.0287 mM min?1for β-galactosidase immobilized to the (FMPS), (FMPS-Ala) and (FMPS-Ala-Ni) supports, respectively. The storage stability of (FMPS-Ala-Ni) was determined to be higher than that of the (FMPS) and (FMPS-Ala) polymers.  相似文献   

18.
We explore ion-specific effects exerted by ionic liquids (ILs) on the enzyme kinetics of yeast alcohol dehydrogenase. The Michaelis-Menten reaction scheme is used to parameterize the observed kinetics in terms of the apparent dissociation constant of the substrate (Michaelis-Menten constant) K(M), the turnover number k(cat), which reflects the number of product molecules per enzyme molecule per second, and the enzymatic efficiency k(cat)/K(M) of the reaction. Results for fifteen salts are used to deduce Hofmeister anion and cation series. The ion rankings derived from K(M), k(cat) and k(cat)/K(M) differ markedly. Only the results for the enzymatic efficiency correspond to expectations from other phenomena, such as the thermal stability of native proteins. Anion variation has a significantly larger effect on the enzymatic efficiency than cation variation. All ILs decrease k(cat) relative to its value for the IL-free solution, thus driving enzyme deactivation. Enhancements of the enzymatic efficiency by some ions are founded in their effects on the Michaelis-Menten constant. The observed Hofmeister anion and cation series point toward hydrophobic interactions as an important factor controlling ion-specific effects on the enzymatic activity.  相似文献   

19.
We present a new assay based on total internal reflection fluorescence (TIRF) to quantify the catalytic activity of adsorbed enzyme monolayers on macroscopically flat surfaces. The need for such an assay derives from a general shortage of assay methods that are sufficiently sensitive to measure reaction kinetics for just a single monolayer of enzymes. The assay is based on the enzymatic conversion of a soluble, nonfluorescent fluorogenic substrate reagent to a soluble, highly fluorescent product. The reaction occurs at the solid-liquid interface where the enzymes are adsorbed. Fluorogenic substrates are introduced to the adsorbed layer by convective diffusion from solutions undergoing steady laminar slit flow. The exponentially decaying evanescent wave that is produced by total internal reflection serves as a "spectroscopic ruler" to resolve the spatial concentration profile of fluorescent products in solution near the interface. By measuring the steady-state fluorescence signal as a function of the Peclet number that characterizes mass transfer conditions in the experiment, it is possible to determine the enzymatic reaction rate. Here we present the development of the method and its application to a test system of beta-galactosidase adsorbed to methylated silica surfaces. Compared to the enzymatic rate constants for this enzyme in free solution, adsorption decreased the Michaelis-Menten rate constant kcat by a factor of 10 and increased the equilibrium binding constant Km by a factor of 4.5. Thus the intrinsic activity of the enzyme, as represented by the ratio kcat/Km, decreased 45-fold due to adsorption. Copyright 1999 Academic Press.  相似文献   

20.
The effects of heat of reaction and temperature change on an immobilized enzyme reactor have previously been generally neglected. A theoretical analysis of the overall enzyme reaction rate involving nonlinear Michaelis-Menten kinetics was carried out in order that predictions of temperature and concentration profiles in packed columns of fixed enzymes could be made. Numerical solutions of the coupled differential equations describing the overall kinetics are presented and explained. Note: The notation used in this paper is presented in a separate section at the end of the article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号