首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
To clarify the growth mechanism of polystyrene (PSL) particles in the soap-free polymerization, characteristics of not only particles but also polymeric materials floating in the bulk were investigated on the molecular scale by using atomic force microscope (AFM), where a cationic initiator V-50 is used to make the formed polymeric materials transfer on the mica plate in sampling. Our main attention here is to know the reason why the particle size increases with increasing initiator concentration in the production of PSL particles. The following are found. (1) As far as the initiators and monomers remain in the bulk solution, the polymeric materials are born in the bulk continuously, because of the slow decomposition rate of initiators. (2) The growth of particles at the early stage of t(r) > or = 0.75 h is considered to be attributable mainly to the particle swelling by absorbing monomers from the bulk. The rapid growth at the intermediate stage is due to the deposition of polymeric materials in the bulk on the particle surface and their simultaneous swelling by monomers in the bulk. (3) The reason why the particle size increases with increasing concentration of initiator is that the growth process is controlled by the deposition rate of polymeric materials in the bulk whose amount increases with the initiator concentration. (4) The particle size and the smoothness of particle surface depend on the relative concentration of initiators and monomers remained.  相似文献   

2.
研究了含水介质中,以枯基醇(CumOH)/三氟化硼(BF3)为引发体系的苯乙烯正离子聚合的特征,探讨了CumOH用量、体系中的水含量对苯乙烯正离子聚合转化率、聚合速率以及产物分子量及其分布的影响;并从分子模拟、分子量末端结构等角度探讨含水介质中苯乙烯正离子聚合的反应机理.结果表明,[H2O]≤0.11 mol/L条件下,苯乙烯正离子聚合具有可控聚合的特征;水对聚合速率、单体转化率以及分子量影响较小;[H2O]>0.11 mol/L,正离子聚合不能顺利进行.根据计算结果,CumOH/BF3引发体系相对于CumOH/H2O引发体系在参与引发所需要的活化能垒更小,说明CumOH/BF3更容易引发苯乙烯正离子聚合,这与实验结果一致.CumOH/BF3引发体系是通过活化C—O键来引发苯乙烯正离子聚合,水作为可逆终止剂有利于进行可控聚合,并得到了末端含有羟基的聚合物.  相似文献   

3.
A novel approach to synthesize narrow particle size distribution cationic latex particles based on styrene and butyl acrylate was proposed. The effect of monomer/water ratios, surfactant (cetyltrimethylammonium chloride) concentrations, and monomer compositions on the evolution of particle size, distribution, number, and morphology as a function of monomer conversion was concerned in order to confirm the optimum polymerization condition. As expected, the particle size of the ultima latex increased with monomer/water ratios and styrene contents decreased with increasing surfactant concentrations. Continuous nucleation phenomena occurred when monomer/water ratio was lesser than 30/70, resulting in a gradual increase in the number of particles in the whole polymerization process. Combined with the previous work (Colloid and Polymer Science, 2014, 292: 519–525), it was concluded that particle coagulation easily took place in cationic emulsion polymerization of styrene. Thus, the narrow particle size distribution cationic latexes with particle scale between 50 nm and 80 nm, 30 wt% solid content could be prepared in a short reaction time.  相似文献   

4.
The polymerization of vinyl monomer initiated by polyethyleneglycol (PEG) in aqueous solution was carried out at 85°C with shaking. Acrylonitrile (AN), methyl methacrylate (MMA), and methacrylic acid were polymerized by PEG–300 (M?n = 300), whereas styrene was not. The effects of the amounts of monomer and PEG, the molecular weight of PEG, and the hydrophobic group at the end of PEG molecule on the polymerization were studied. The selectivity of vinyl monomer and the effect of the hydrophobic group are discussed according to “the concept of hard and soft hydrophobic areas and monomers.” The kinetics of the polymerization was investigated. The overall activation energy in the polymerization of AN was estimated as 37.9 kJ mol?1. The polymerization was effected by a radical mechanism.  相似文献   

5.
The kinetics and mechanism of the pseudoliving free-radical polymerization of styrene are studied for the first time under the conditions of reversible inhibition by TEMPO nitroxides. An abnormal decline in the reduced rate of polymerization, which is inconsistent with a decrease in the concentration of the monomer, and an increase in the steady-state concentration of the free nitroxide are discovered. The main quantitative characteristics of the pseudoliving process are determined, namely, the rate constants of reinitiation and reversible recombination, and the constant of pseudoliving equilibrium between dormant and growing chains. It is shown that the polarity of a medium and the concentration of the monomer determine the character of polymerization in a solution: With an increase in the polarity of the solvent, the pseudoliving equilibrium constant increases, the reduced rate of styrene polymerization decreases, and the molecularmass-distribution of the polymer formed at initial conversions narrows. The smaller the concentration of styrene in the reaction system, the more pronounced the above differences associated with the solvent nature.  相似文献   

6.
A thermodynamic model has been proposed for the simulation of monomer partitioning behavior in the dispersion polymerization of styrene in ethanol. The monomer concentration in the polymer particles is very low (20 vol% at 5% conversion) and decreases further as the polymerization proceeds. It is independent of stabilizer concentration but is strongly dependent on initial monomer concentration. The partitio n coefficient ([Mp]/[Mc]) of styrene increases from 0.8 to 1.1 with incresing conversion. There are two polymerization loci in dispersion polymerization, namely the continuous and polymer phases. Competition between solution and heterogeneous polymerization has been observed in this system. The rate of dispersion polymerization is dependent on initial monomer concentration but is independent of initiator concentration at higher conversions. The molecular weight of the polymers produced by this process increases with increasing conversion and decreases with increasing initiator concentration.  相似文献   

7.
Thin-film coating on cotton by the admicellar polymerization process was investigated. In this work, styrene was used as the monomer to coat styrene on cotton. The effects of surfactant, styrene, initiator, and electrolyte concentrations on the polymerization process were determined. The polystyrene film formed was characterized by SEM, FTIR, and GPC. The increase in the hydrophobicity of the treated cotton surface was determined by the drop test. Results show that polystyrene thin film was successfully formed on cotton, resulting in cotton that can resist wetting by a water droplet for longer than 30 min.  相似文献   

8.
微乳液中苯乙烯聚合反应的研究   总被引:2,自引:0,他引:2  
测定了十二烷基磺酸钠(As)/正丁醇/20%苯乙烯/水体系相平衡。用油溶性偶氮二异丁腈(AIBN)和水溶性过二硫酸钾(K~2S~2O~8)为引发剂,研究了油包水(W/O)、双连续(BC)和水包油(O/W)型微乳液介质中苯乙烯的聚合反应。得到了苯乙烯转化率和聚苯乙烯分子量与体系水含量之间的关系,讨论了微乳液结构对聚合作用的影响。并通过电镜观察了聚苯乙烯的形貌,求得了聚苯乙烯的粒径,同时用^1HNMR研究了苯乙烯在微乳液液滴中的增溶位置,分析了聚合作用的实验结果。  相似文献   

9.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization of a typical hydrophobic monomer of styrene within microreactor of shell‐corona hollow microspheres of poly(styrene‐co‐methacrylic acid) suspending in water is studied. The shell‐corona hollow microspheres contain a hydrophilic corona of poly(methacrylic acid) (PMAA) and a cross‐linked polystyrene shell, which can suspend in water because of the hydrophilic corona of PMAA. The size of the shell‐corona hollow microspheres is about 289 nm and the extent of the microcavity of the hollow microsphere is 154 nm. These shell‐corona hollow microspheres can act as microreactor, within which the typical hydrophobic monomer of styrene, the RAFT agent of S‐benzyl dithiobenzoate and the initiator of 2,2′‐azobisisobutyronitrile can be encapsulated and RAFT polymerization of styrene takes place in well controlled manner in water. It is found that the resultant polymer of polystyrene has a competitively low polydispersity index and its number‐average molecular weight linearly increases with monomer conversion. The method is believed to be a new strategy of RAFT polymerization of hydrophobic monomer in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The mechanism of the photoinitiation of the vinyl polymerization sensitized by benzil and 4,4′-dimethoxybenzil was studied. The monomers considered were methacrylic acid esters and styrene derivatives. All these monomers are efficient quenchers of the excited triplet benzil. However, the initiation efficiency of the benzil is important only when styrene derivatives are employed as monomers. The main polymerization process follows a simple free radical mechanism. The initiation step is a consequence of the interaction (triplet benzil–monomer double bond) through a charge transfer complex.  相似文献   

11.
Chain transfer reactions widely exist in the free radical polymerization and controlled radical polymerization, which can significantly influence polymer molecular weight and molecular weight distribution. In this work, the chain transfer reactions in modeling the reversible addition–fragmentation transfer (RAFT) solution copolymerization are included and the effects of chain transfer rate constant, monomer concentration, and comonomer ratio on the polymerization kinetics and polymer molecular weight development are investigated. The model is verified with the experimental RAFT solution copolymerization of styrene and butyl acrylate, with good agreements achieved. This work has demonstrated that the chain transfer reactions to monomer and solvent can have significant impacts on the number‐average molecular weight (Mn) and dispersity (Ð).  相似文献   

12.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

13.
When a dioctadecyldimethylammonium bromide (DODA) monolayer is spread onto a styrene sulfonate (SSt) aqueous solution, this monomer undergoes a spontaneous polymerization process [Fichet, O; Teyssié, D. Macromolecules 2002, 35, 5352]. However, the polymer synthesized in this monolayer cannot be investigated by classical characterization techniques. Brewster angle microscopy has thus been used as a complementary method in order to study this spontaneous polymerization. From these measurements, the threshold concentration above which the spontaneous polymerization occurs has been determined more precisely; the monomer adsorption under the DODA monolayer has been evidenced as being very fast, as supposed previously; moreover, sodium bicarbonate is confirmed as an inhibitor of the polymerization. Also, the replacement of SSt by toluene sulfonate (TSt) confirms the SSt spontaneous polymerization. Finally, the molecular weight and/or the structure of the polymer synthesized in the monolayer seems to be different from those synthesized in solution.  相似文献   

14.
Living radical polymerization of styrene in a miniemulsion by reversible addition–fragmentation chain transfer (RAFT) was successfully realized in the presence of beta-cyclodextrin (CD), using sodium dodecyl sulfate and hexadecane as surfactant and costabilizer, respectively. The drawback of instability (red layer formation) encountered in the living radical polymerization in emulsion or miniemulsion was overcome. The linear relationship between the monomer conversion and the molecular weight, as well as lower molecular weight distribution (MWD), shows that the polymerization process was under control. The addition of CD was found to have little influence on the polymerization rate. However, MWD of the polymer synthesized is obviously decreased. The mechanism of stability and controllability improvement in the presence of CD proposed that the complex formation between CD and RAFT agent or RAFT agent-ended oligomer increased their diffusion ability from monomer droplet to polymerization locus and improved the homogeneity of the RAFT agent level among the polymerization loci.  相似文献   

15.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

16.
The atom transfer radical polymerizations (ATRPs) of styrene initiated by a novel initiator, ethyl 2‐N,N‐(diethylamino)dithiocarbamoyl‐butyrate (EDDCB), in both bulk and solution were successfully carried out in the presence of copper(I) bromide (CuBr) and N,N,N′,N,N″‐pentamethyldiethylenetriamine at 115 °C. The polymerization rate was first‐order with respect to the monomer concentration, and the molecular weights of the obtained polymers increased linearly with the monomer conversions with very narrow molecular weight distributions (as low as 1.17) up to higher conversions in both bulk and solution. The polymerization rate was influenced by various solvents in different degrees in the order of cyclohexanone > dimethylformamide > toluene. The molecular weight distributions of the produced polymers in cyclohexanone were higher than those in dimethylformamide and toluene. The results of 1H NMR analysis and chain extension confirmed that well‐defined polystyrene bearing a photo‐labile N,N‐(diethylamino)dithiocarbamoyl group was obtained via ATRP of styrene with EDDCB as an initiator. The polymerization mechanism for this novel initiation system is a common ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 32–41, 2006  相似文献   

17.
Copolymers of ethyl cellulose (EC) with polystyrene (PSt) were synthesized through atom transfer radical polymerization (ATRP). The molecular weight of graft copolymers increased without any trace of the EC macro-initiator, and the polydispersity of the side chains was low. The molecular weight of the side chains increased with the monomer conversion. Kinetic study indicated that the polymerization was first order. The micelle characteristics of the graft copolymer in acetone were investigated using dynamic light scattering (DLS), atom force microscopy (AFM) and transmission electron microscopy (TEM). With increasing the concentration, micelles were gradually formed from the solution. The TEM and AFM images indicated that the micelles had spherical shape and showed core-shell structure.  相似文献   

18.
Dispersion RAFT polymerization of styrene in the alcohol/water mixture mediated with the brush macro‐RAFT agent of poly[poly(ethylene oxide) methyl ether vinylphenyl‐co‐styrene] trithiocarbonate [P(mPEGV‐co‐St)‐TTC] with similar molecular weight but different chemical composition is investigated. Well‐controlled RAFT polymerization including an initial slow homogeneous polymerization and a subsequent fast heterogeneous polymerization at almost complete monomer conversion is achieved. The molecular weight of the synthesized block copolymer increases linearly with the monomer conversion, and the polydispersity is relatively narrow (PDI < 1.3). The RAFT polymerization kinetics is dependent on the chemical composition in the brush macro‐RAFT agents, and those with high content of hydrophobic segment lead to fast RAFT polymerization. The growth of the block copolymer nano‐objects during the RAFT polymerization is explored, and various block copolymer nano‐objects such as nanospheres, worms, vesicles and large‐compound‐micelle‐like particles are prepared. The parameters such as the chemical composition in the brush macro‐RAFT agent, the chain length of the solvatophobic block, the concentration of the feeding monomer and the solvent character affecting the size and morphology of the block copolymer nano‐objects are investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3177–3190  相似文献   

19.
含稀土钛系催化剂的苯乙烯高活性定向聚合研究   总被引:3,自引:1,他引:3  
本文用新研制的含稀土钕化合物的钛系催化剂(SN-1催化剂)于苯乙烯在苯溶液中进行定向聚合,能同时使产率、等规度、催化效率与聚合速率四项指标得到提高并远超过文献值。研究了各种聚合条件,即催化剂浓度、苯乙烯单体浓度、助催化剂三乙基铝浓度和聚合温度各因素对于催化效率、聚苯乙烯产率、等规度和分子量的影响规律并作讨论。  相似文献   

20.
A new 5-vinyl-2-hydroxyacetophenone monomer was synthesized using Heck reaction. The monomer was obtained by reacting 5-bromo-2-hydroxyacetophenone with ethylene in a palladium catalyzed reaction. Better yield was obtained at low concentration of the catalyst, high temperature and pressure of the ethylene gas. The monomer was homopolymerized and copolymerized with styrene using free radical solution polymerization techniques and investigated for reactivity ratio, retardation effect of the monomer on the polymerization of styrene. Homopolymer with average molecular weight of 40,391 was found to form binuclear complex with Cu2+. The complex was evident from shift in n-π* transition from 332-378 nm in UV region and appearance of strong absorption at 1578 cm−1 in the IR of the precipitated complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号