首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varying coefficient error-in-covariables models are considered with surrogate data and validation sampling. Without specifying any error structure equation, two estimators for the coefficient function vector are suggested by using the local linear kernel smoothing technique. The proposed estimators are proved to be asymptotically normal. A bootstrap procedure is suggested to estimate the asymptotic variances. The data-driven bandwidth selection method is discussed. A simulation study is conducted to evaluate the proposed estimating methods.  相似文献   

2.
针对含有内生变量的面板数据回归模型,提出基于工具变量的分位数回归估计方法.首先,通过引入工具变量解决协变量的内生性问题,然后利用分位数回归的方法对回归系数进行估计.在一些正则条件下,证明所提出估计的大样本性质,通过模拟研究证实该方法的有限样本性质.  相似文献   

3.
A new estimation procedure based on modal regression is proposed for single-index varying-coefficient models. The proposed method achieves better robustness and efficiency than that of Xue and Pang (2013). We establish the asymptotic normalities of proposed estimators and evaluate the performance of the proposed method by a numerical simulation.  相似文献   

4.
作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的数据分析模型.利用Backfitting方法拟合这类特殊的可加模型,可得到模型中常值系数估计量的精确解析表达式,该估计量被证明是n~(1/2)相合的.最后通过数值模拟考察了所提估计方法的有效性.  相似文献   

5.
The paper provides sufficient conditions for the asymptotic normality of statistics of the form a ijbRiRj, wherea ijandb ijare real numbers andR iis a random permutation.  相似文献   

6.
         下载免费PDF全文
Consider the regression model y1=x1β+g(t1)+ei for i=1,2,…, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of ĝn(·) of g(·) including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(·). Based on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some asymptotic results about estimates.  相似文献   

7.
    
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.  相似文献   

8.
Consider partial linear models of the form Y=Xτβ+g(T)+e with Y measured with error and both p-variate explanatory X and T measured exactly. Let be the surrogate variable for Y with measurement error. Let primary data set be that containing independent observations on and the validation data set be that containing independent observations on , where the exact observations on Y may be obtained by some expensive or difficult procedures for only a small subset of subjects enrolled in the study. In this paper, without specifying any structure equations and distribution assumption of Y given , a semiparametric dimension reduction technique is employed to obtain estimators of β and g(·) based the least squared method and kernel method with the primary data and validation data. The proposed estimators of β are proved to be asymptotically normal, and the estimator for g(·) is proved to be weakly consistent with an optimal convergent rate.  相似文献   

9.
For generalized linear models (GLM), in case the regressors are stochastic and have different distributions, the asymptotic properties of the maximum likelihood estimate (MLE) β^n of the parameters are studied. Under reasonable conditions, we prove the weak, strong consistency and asymptotic normality of β^n  相似文献   

10.
This paper proposes a method for estimation of a class of partially linear single-index models with randomly censored samples. The method provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure-time models for survival analysis. The estimation procedure involves three stages: first, transform the censored data into synthetic data or pseudo-responses unbiasedly; second, obtain quasi-likelihood estimates of the regression coefficients in both linear and single-index components by an iteratively algorithm; finally, estimate the unknown nonparametric regression function using techniques for univariate censored nonparametric regression. The estimators for the regression coefficients are shown to be jointly root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as all the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodology.  相似文献   

11.
In this paper, we provide the almost-sure convergence and the asymptotic normality of a smooth version of the Robbins–Monro algorithm for the quantile estimation. A Monte Carlo simulation study shows that our proposed method works well within the framework of a data stream.  相似文献   

12.
广义线性回归拟似然估计的强相合性   总被引:2,自引:0,他引:2  
本文研究了广义线性模型g=μ(x'β0)+e中形如的拟似然方程,在一定的条件下证明了当n充分大时此方程以概率1有解βn,得到了βn的强相合性和收敛速度.  相似文献   

13.
A finite series approximation technique is introduced. We first applythis approximation technique to a semiparametric single-index model toconstruct a nonlinear least squares (LS) estimator for an unknown parameterand then discuss the confidence region for this parameter based on theasymptotic distribution of the nonlinear LS estimator. Meanwhile, acomputational algorithm and a small sample study for this nonlinear LSestimator are developed. Additionally, we apply the finite seriesapproximation technique to a partially nonlinear model and obtain some newresults.  相似文献   

14.
误差为线性过程时回归模型的估计问题   总被引:10,自引:0,他引:10  
对一类非线性回归模型及线性模型,在误差是一个弱平稳线性过程及适当的条件下,获得了估计量的r-阶平均相合性、完全相合性和渐近正态性。  相似文献   

15.
主要研究半参数非时齐扩散模型的参数估计问题.基于非时齐扩散模型的离散观测样本,首先得到漂移参数的局部线性复合分位回归估计,并证明估计量的渐近偏差、渐近方差和渐近正态性.其次,讨论了带宽的选择和局部线性复合分位回归估计关于局部线性最小二乘估计的渐近相对效,所得到的局部估计较局部线性最小二乘估计更为有效.最后,通过模拟说明了局部线性复合分位回归估计比局部线性最小二乘估计的模拟效果更好.  相似文献   

16.
冯海林  罗倩倩 《应用数学》2020,33(1):209-218
左截断数据是一类具有特殊结构的缺失数据,当且仅当研究变量大于一定的阈值时才能取得观察值.本文针对左截断数据下的非线性回归模型,提出了加权分位数估计方法,利用加权方式处理左截断缺失数据,取得了与完整数据相近的估计结果.并在一定假设条件下,证明了所提估计方法的一致性和渐近正态性等大样本性质,最后通过数值模拟展现所提估计方法...  相似文献   

17.
         下载免费PDF全文
For the Generalized Linear Model (GLM), under some conditions including that the specification of the expectation is correct, it is shown that the Quasi Maximum Likelihood Estimate (QMLE) of the parameter-vector is asymptotic normal. It is also shown that the asymptotic covariance matrix of the QMLE reaches its minimum (in the positive-definte sense) in case that the specification of the covariance matrix is correct.  相似文献   

18.
朱春浩 《经济数学》2008,25(1):84-95
考虑回归模型yi=xiβ g(ti) ei,i=1,2,…,n,其中(xi,ti)是固定非随机设计点列,g(.)是未知函数,β是待估参数,ei是随机误差且关于非降σ-代数列{Fi,i≥1}为鞅差序列,且满足E(e2n|Fn-1)-σ2=op(1),n→∞,其中0<2σ<∞为未知常数,本文基于g(.)的一类非参数估计的β的最小二乘估计■和2σ的估计量■,在适当条件下证明了其具有渐近正态性,从而推广了[1]在ei为iid情形下的结果.  相似文献   

19.
         下载免费PDF全文
Consider tile partial linear model Y=Xβ+ g(T) + e. Where Y is at risk of being censored from the right, g is an unknown smoothing function on[0,1], β is a 1-dimensional parameter to be estimated and e is an unobserved error. In Ref[1,2], it wes proved that the estimator Σn)-2Ên) for the asymptotic variance of βnn) is consistent. In this paper, we establish the limit distribution and the law of the iterated logarithm for En, and obtain the convergest rates for En and the strong uniform convergent rates for ĝn(gn).  相似文献   

20.
本文考虑多元部分线性回归模型的估计问题,得到了该模型参数的最小二乘估计和非参数函数的B-样条估计,并证明了参数估计的渐近正态性,给出了非参数函数估计的最优收敛速度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号