首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been experimentally demonstrated that electron irradiation of photochromic glasses containing ions of univalent copper gives rise to the formation of metallic copper nanocrystals in near-surface layers of the glass. The glass composition and conditions for electron irradiation and heat treatment have been shown to affect the amplitude and spectral position of the plasmon resonance of copper nanoparticles. A model has been proposed for explaining the spectral shift in the plasmon resonance.  相似文献   

2.
We present experimental results on the formation of silver nanocrystals in photo-thermo-refractive glasses during heat treatment after ultraviolet and fast-electron irradiation. We compare the optical density spectrum of samples at different stages of heat treatment. We show that the difference in the formation kinetics of silver nanoparticles is determined by the spatial redistribution of silver ions during electron irradiation and the change in the chemical composition of near-surface layers of glass.  相似文献   

3.
Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.  相似文献   

4.
The formation of argentic clusters and very small Ag nanoparticles of 0.5 to 2 nm size in commercial soda-lime glass silver-doped by Ag/Na ion exchange in a mixed nitrate melt has been studied by electron microscopy and EXAFS. Particles formation was induced already during the ion exchange procedure, or by subsequent ion irradiation with 1.5 MeV He+ or 3 MeV Au+. The presence of nanoparticles was also macroscopically revealed by their surface plasmon resonance. The structural characterization indicates that specific configurations of silver oxide-like structures, so-called argentic clusters, are involved in the initial stage of nanoparticles formation.  相似文献   

5.
激光诱导玻璃内部金纳米颗粒的析出及光谱   总被引:4,自引:0,他引:4  
使用钛宝石飞秒激光引发和热处理相结合,实现了在含有金离子的硅酸盐玻璃内部,有空间选择性地析出金纳米颗粒。对吸收光谱的研究表明,随着热处理温度的升高,吸收峰强度增大且红移;随着激光功率密度的增大,金纳米颗粒也增大。在特定的激光和热处理条件作用下,可以在玻璃内部有空间选择性的使金离子还原后聚集,形成金纳米颗粒,具有量子尺寸效应。改变激光功率和热处理温度可以控制所析出的金属纳米粒子的尺寸,从而实现多色显示,飞秒激光诱导金纳米颗粒具有稳定性,颜色具有持久性。  相似文献   

6.
Space-selective phase separation was induced inside Na2O–SiO2 glasses by changing the glass composition locally from a miscible composition to an immiscible one via femtosecond-laser irradiation at a high repetition rate. The formation of a nanoscale co-continuous structure due to phase separation was confirmed by scanning electron microscopy after heat treatment, polishing until the laser-modified area was exposed, and subsequent etching. The configuration of the structure could be controlled by changing the heat-treatment time.  相似文献   

7.
采用离子交换结合热处理的方法在碱石灰玻璃表面制备了银纳米颗粒。通过紫外-可见分光光度计、X射线衍射仪、扫描电子显微镜对样品进行了表征。结果表明:热处理时,银离子在玻璃表面成核并生长成近似长方形的纳米颗粒。吸收光谱在416nm附近出现明显的银纳米颗粒表面等离子体共振吸收特征峰。  相似文献   

8.
Sodium calcium silicate glasses with Ag+ implanted ions are studied. The ion implantation conditions are as follows: the energy is 60 keV, the dose is 7×1016 cm−2, and the ion current density is 10 μA/cm2. Ion implantation provides the formation of a composite layer that incorporates silver nanoparticles in the surface region of glass. The size distribution of nanoparticles over the depth in the composite layer is strongly nonuniform. The effect of a high-power pulsed excimer laser on the composite layer is investigated. It is found that, under laser irradiation, the size of silver nanoparticles in the implanted layer decreases but the size distribution of nanoparticles over the depth remains nonuniform, even though it becomes slightly narrower compared to that observed prior to irradiation. The experimental results are interpreted in terms of the effects of the melting of glass and metallic particles on a nanosecond scale. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 2100–2106. Original Russian Text Copyright ? 2001 by Stepanov, Popok, Hole, Bukharaev.  相似文献   

9.
The instability of lead halide perovskites in various application-related conditions is a key challenge to be resolved. We investigated the formation of metal nanoparticles during transmission electron microscopy(TEM) imaging of perovskite-related metal halide compounds. The metal nanoparticle formation on these materials originates from stimulated desorption of halogen under electron beams and subsequent aggregation of metal atoms. Based on shared mechanisms,the TEM-based degradation test can help to evaluate the material stability against light irradiation.  相似文献   

10.
Composite nanoparticles consisting of gold and iron oxide were synthesized in aqueous solution systems by using a high-energy electron beam. The electron irradiation induces radiation-chemical reaction to form metallic gold nanoparticles. These gold nanoparticles were firmly immobilized on the surface of the support iron oxide nanoparticles. Surface of the support iron oxide nanoparticles are almost fully coated with fine gold nanoparticles. The size of these gold nanoparticles depended on the concentrations of gold ions, polymers and iron oxide nanoparticles in the solutions before the irradiation.  相似文献   

11.
The shapes of initially spherical Ag nanoparticles in soda-lime glass are persistently changed using fs laser irradiation. With linearly polarized pulses, this shape transformation of the nanoparticles causes optical dichroism of the material. The intensity dependence of this effect is studied comprehensively, addressing the whole intensity range of permanent modifications as well as the influence of the number of laser pulses applied to one spot on the sample. The results are used as basis to develop a complete scenario of the possible mechanisms leading to the laser-induced shape transformation of metallic nanoparticles in glass.  相似文献   

12.
The processes of laser-assisted formation of elongated Au nanoparticles and their subsequent agglomeration and fragmentation have been experimentally investigated. Elongated gold nanoparticles were formed by laser ablation of a solid target in water. IR radiation of ytterbium-doped fiber laser with a pulse width of 200 ns and a pulse energy of 0.5 to 1 mJ was used to this end. The extinction spectra and transmission electron microscopy images indicate the formation of elongated gold nanoparticles. The interaction of laser radiation with aqueous colloids of elongated nanoparticles in dependence of the pulse energy and exposure time has been analyzed. Possible processes of laser-assisted formation of elongated Au nanoparticles and their subsequent transition from agglomeration to fragmentation of gold nanoparticles, induced by laser irradiation are discussed.  相似文献   

13.
Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV–Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.  相似文献   

14.
Energetic materials are solids that release a large amount of energy in combustion. The evaluation depends on both combustion heat and ignition temperature. Conventional non-metallic materials have low ignition temperature but small combustion heat,whereas metals have large combustion heat but high ignition temperatures. We show that many metallic glasses, combining the merits of both metals and non-metals, have large combustion heat, approximately twice that of the non-metals, and low ignition temperature that is several hundreds of Kelvin lower than that of the metals. The ease in igniting metallic glass results from the low thermal conductivity of the materials and the storage of energy in their liquid-like atomic structure. Metallic glass ribbons outweigh metallic nanoparticles due to their high production efficiency, low cost and nontoxicity. The findings suggest that metallic glasses are alternative energetic materials.  相似文献   

15.
The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.  相似文献   

16.
A new method is proposed for synthesizing metallic nanoparticles in a polymer matrix. These nanoparticles are synthesized during thermal vacuum evaporation of a metal (4.8 × 10−6 g/cm2) onto the surface of viscousfluid epoxy resin (at a viscosity of 20–120 Pa s) having room temperature, which is well below the glass transition temperature of the polymer. As a result, epoxy resin layers containing silver nanoparticles in their volume form; these nanoparticles are studied by transmission electron microscopy and optical absorption spectroscopy. Various types of disperse structures formed by metallic nanoparticles in the polymer are detected. The morphology of the composite material is found to be controlled by the polymer viscosity and the metal deposition time.  相似文献   

17.
飞秒激光所致金纳米粒子析出的玻璃非线性吸收   总被引:5,自引:0,他引:5       下载免费PDF全文
依据Z-scan技术,使用波长532nm的纳秒脉冲,研究了通过聚焦的飞秒脉冲诱导并辅以热处理得到的金纳米粒子析出的玻璃的非线性吸收.观察到金纳米粒子析出的玻璃具有饱和吸收特性.根据局域场效应,对实验结果拟合,得到在接近表面等离子体共振激发情况下,金纳米粒子三阶极化率虚部分别为Imχ(3)m=57×10-7esu.玻璃样品中金纳米粒子的非线性响应主要起源于热电子贡献. 关键词: 带内跃迁 带间跃迁 热电子贡献  相似文献   

18.
Since the inception of matrix assisted pulsed laser evaporation (MAPLE), a large body of research has focused on the structure and property preservation of soft materials. Departing from this precedent, a variation of MAPLE to grow complex inorganic nanoparticles and nanoporous thin films from acetate precursors is presented. While some aspects of MAPLE are retained, a weakly absorbing matrix solvent is used to promote absorption by the precursors, leading to photothermal decomposition. The diffusion of ions within the laser interaction volume results in the formation of nanoparticles, which are then ejected by subsequent pulses. The acetate precursors were processed into colloidal suspensions in deionized water and frozen to form solid targets, followed by irradiation with a pulsed excimer laser at fluences ranging from 0.25 to 0.75 J/cm2. Nanoparticles and nanoporous films of unary, binary, and ternary metallic and oxide systems were deposited at room temperature onto substrates of Si and electron-transparent grids. Size distributions varied between different material systems with negligible pressure and energy effects, with distribution extrema ranging from 2 to 100 nm in diameter. Characterization of the nanoparticles was performed by high resolution scanning and transmission electron microscopy, and energy dispersive x-ray spectroscopy.  相似文献   

19.
The influence of sodium nanoparticles and secondary heat treatment conditions on the spectralluminescent characteristics of fluorophosphate glasses with PbSe molecular clusters and quantum dots is studied. Experiments with glasses containing no sodium nanoparticles show that their thermal treatment leads to the formation of molecular clusters with subsequent formation of quantum dots having an intense luminescence. The results of numerical simulation for glasses with sodium nanoparticles shows that heat treatment leads to formation of a sodium fluoride shell on the nanoparticles surface. It is shown that quenching of the luminescence of PbSe molecular clusters and quantum dots takes place in these glasses.  相似文献   

20.
We demonstrate a new method of silver nanoparticles formation on a silver-containing glass surface due to its irradiation by a pulsed CO2 and YAG:Nd lasers. The particles are formed as a result of reduction of silver ions from the glass at the edges of a laser torch emerging during evaporation and ablation. The settled particles are then fixed on sample surface by a shell of glass dielectric components. The method allows creating plasmonic nanostructures on the glass surface for sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号