首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiwavelength laser source is demonstrated with a high power erbium-doped fiber amplifier as the gain medium. A highly nonlinear photonic crystal fiber (PCF) is inserted in the ring cavity to provide nonlinear gain by four-wave mixing. A Sagnac loop is incorporated in the ring cavity serving as a comb-like multichannel filter. The comparison between fiber ring laser without PCF and with PCF shows that the highly nonlinear PCF can generate a larger number of excited wavelengths and help stabilize the output power.  相似文献   

2.
3.
Ahmad  B. A.  Al-Alimi  A. W.  Abas  A. F.  Harun  S. W.  Mahdi  M. A. 《Laser Physics》2012,22(5):977-981
A double frequency spaced multiwavelength Brillouin-Erbium doped fiber laser (BEDFL) with figure-of-eight cavity have been successfully developed and tested. Double frequency spacing is achieved by using a piece of 2 km of highly nonlinear fiber (HNLF) as a gain medium. Figure-of-eight configuration removes the odd order Stokes signals via a four-port circulator. Fifteen Stokes channels are simultaneously generated with a spacing of 0.154 nm that is around 20 GHz, when the Brillouin pump and 980 nm pump powers are fixed at the optimized values of 6 dBm and 40 mW, respectively. Fourteen anti stoke channels are also obtained, which are generated through four wave mixing (FWM) process in the laser cavity. The output is smooth triangular comb. The BEFL can also be tuned from 1526.5 to 1567.5 nm.  相似文献   

4.
We experimentally show dark pulse generation in all-normal dispersion multiwavelength erbium-doped fiber laser(EDFL) with a long cavity of figure-of-eight configuration. The EDFL generates a stable multiwavelength laser with 0.47 nm spacing at 24 m W threshold pump power, while the number of lines obtained increases with the pump power. A dark pulse emission is observed as the pump power is increased above 137 m W, with fundamental repetition rate of 29 k Hz and pulse width of 2.7 μs. It is observed that the dark pulse train can be shifted to second-, third-, and fourth-order harmonic dark pulses by carefully adjusting the polarization controller. For the fundamental dark pulse, the maximum pulse energy of 32.4 n J is obtained at pump power of 146.0 mW.  相似文献   

5.
We propose and demonstrate a multiwavelength erbium-doped fiber laser stabilized by four-wave mixing (FWM) in a nonlinear silicon-on-insulator (SOI) waveguide. The optical gain was provided by an erbium-doped fiber amplifier, and the wavelength selectivity was achieved by a Fabry–Pérot comb filter in the ring cavity. The FWM in the SOI waveguide was enhanced by applying a reverse-biased p-i-n diode structure to reduce free-carrier absorption. Making use of the nonlinearity of the SOI waveguide, a multiwavelength laser with six output wavelengths at 0.8 nm spacing was achieved. The power difference among modes was equalized within a range of 1.8 dB. The power fluctuation of each mode was stabilized to <0.65 dB during 20 min observation at room temperature.  相似文献   

6.
We study a mechanism to attain stable and ultra-flat multiwavelength oscillations in erbium-doped fiber lasers (EDFLs). The key concept is to introduce intensity-dependent loss (IDL) into the laser cavity, which can effectively suppress the mode competition in the homogeneously broadened gain medium and ensure a uniform power distribution over wavelengths via the gain-clamping effect. The technique was successfully demonstrated by employing a nonlinear optical loop mirror (NOLM) in erbium-doped fiber laser cavity. Based on the experimental results, further experimental investigation and theoretical analysis are carried out to show the effectiveness of the gain-clamping mechanism in realizing the multiwavelength operation of the EDFL.  相似文献   

7.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

8.
Lee JH  Takushima Y  Kikuchi K 《Optics letters》2005,30(19):2599-2601
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.  相似文献   

9.
Wideband multiwavelength erbium-doped fiber ring lasers with frequency shifted feedback are described. The use of an intra-cavity gain flattening filter (GFF) was proposed in order to increase the lasing spectral bandwidth, leading to a demonstration of 34 lasing wavelengths in 28 nm bandwidth in C-band. The GFF induced spectral output power fluctuation is discussed. Multiwavelength operation was also demonstrated for the first time in L-band, where wideband laser operation was obtained without a GFF. Optical bistability and Kerr effect induced pulsation were determined to be limiting factors to stable operation range in this kind of multiwavelength lasers.  相似文献   

10.
We propose and experimentally demonstrate a dual-pass unbalanced in-line Sagnac interferometer as a novel comb filter for implements in erbium-doped fiber lasers to obtain wide wavebands of multiwavelength radiations with enhancements of signal-to-noise ratios (SNRs). The hybrid combinations of the comb filter with the two schemes of nonlinear polarization rotation and intensity dependent loss have successfully not only enlarged the lasing bandwidth up to 47 nm but also enhanced the SNR up to 40 dB. The simultaneous lasing-wavelengths of 117 channels are also obtained. The multiwavelength lasing spectra with free spectral range of 0.4 nm covering the full L-band are useful for the applications of DWDM and WDM-PON systems.  相似文献   

11.
G. Sun  Y. Zhou  L. Cui  Y. Chung 《Laser Physics》2011,21(11):1914-1918
A multiwavelength switchable erbium-doped fiber laser with linear cavity is proposed and experimentally demonstrated. It is based on a fiber loop mirror incorporating a piece of high birefringence few-mode fiber and polarization controller. Due to dependence of its reflection properties on the polarization controllers, the fiber laser can operate in the random combination of three wavelengths by only adjusting the polarization controllers in the linear cavity. The wavelengths involved in the switching operation are determined by the merged Sagnac and intermodal interferences elicited in the fiber loop mirror. The optical signal to noise extinction ratio of every oscillation line is higher than 40 dB and power fluctuation less than 0.5 dB.  相似文献   

12.
Wei D  Li T  Zhao Y  Jian S 《Optics letters》2000,25(16):1150-1152
Eight-wavelength Er-doped fiber lasers with lasing wavelength separations of ~1.6 and ~0.8 nm , respectively, have been achieved by use of overlap-written fiber Bragg gratings (OWFBG's) in the fiber lasers and by cooling of the Er-doped fiber with liquid N(2) . Our experiment shows that by utilizing the OWFBG's to select the lasing wavelengths one can achieve fiber lasers with lasing wavelengths and lasing wavelength separations that match the International Telecommunication Union channel-allocation grid well.  相似文献   

13.
We demonstrate graphene mode-locked nanosecond erbium-doped fiber laser in an all-fiber ring cavity. The clean and robust pulse train was generated at 27 mW pump power. Resultant central wavelength, repetition rate and pulse width was 1560 nm, 388 kHz and 6 ns, respectively. With two stage fiber amplifier, the output power was 553 mW, corresponding to single pulse energy of 1.4 μJ. In addition, the pulse-width can be varied ranging from 3 ns to 20 ns at repetition rate between 200 kHz and 1.54 MHz by changing the length of the laser cavity.  相似文献   

14.
Zhou  M.  Luo  Z. Q.  Wang  J. Z.  Ye  C. C.  Fu  H. Y.  Zhang  C.  Cai  Z. P.  Xu  H. Y. 《Laser Physics》2012,22(5):991-995
An all-fiber multiwavelength erbium-doped fiber laser (MEDFL) functionalized with evanescent-field-interacting graphene is proposed and experimentally demonstrated. Graphene-polymer nanocomposites were deposited around the waist region of a fiber taper fabricated by flame-stretching method. Using the graphene-deposited fiber taper (GDFT) to induce four-wave mixing (FWM) as a power-equalizing device for suppressing the unstable mode competition in MEDFL, stable multiwavelength lasing around 1530 nm was obtained with a wavelength spacing of 0.56 nm, an extinction ratio of 33 dB, and a narrow linewidth per channel of <0.01 nm. The output spectrum of the multiwavelength laser has a good flatness, and the power fluctuation of each wavelength is less than 1.5 dB. Comparing with the traditional methods, such evanescent-field-interaction based graphene stabilizing mechanism for multiwavelength generation possesses unique advantages: (1) it can avoid the graphene thermal damage, (2) it’s a real all-fiber integrated structure, and (3) it provides a longer interaction length for exciting FWM more efficiently.  相似文献   

15.
A tunable multiwavelength erbium-doped fiber laser is proposed and experimentally studied. The intensity-dependent loss (IDL) in a nonlinear optical loop mirror is utilized for stable multiwavelength lasing output. The accurate switch operation, i.e., the lasing lines emerge/disappear one by one at the longer wavelength side of the initial one, is achieved by adjusting the intra-cavity loss using a variable attenuator. The effect of the intra-cavity loss on the lasing characteristics is theoretically analyzed. Numerical results confirm the experiment measurements and suggest that both the IDL and the gain spectrum, which vary with the intra-cavity loss, lead to the observed tunable lasing behavior.  相似文献   

16.
In this paper, the mixed-cascaded Raman scattering has been developed to investigate multiwavelength phosphosilicate Raman fiber lasers (MRFLs). With a tunable Yb3+-doped double-clad fiber laser (YDCFL) as the Raman pump source, we propose a compact and waveband-switchable (from the O- to U-band) MRFL using two- or three-mixed-cascaded Raman scattering of both SiO2/GeO2 and P2O5 in a P-doped fiber. We also confirm experimentally the feasibility of the proposed mixed-cascaded MRFL. When a 1064 nm YDCFL was used to pump a spool of 1-km P-doped fiber, the compact linear-cavity MRFLs in the O- and L-band operation were obtained, respectively, based on the two- and three-mixed cascaded Raman scattering. Up to 16-wavelength stable oscillation around 1320 nm has been observed with a spacing of 0.40 nm and an extinction ratio >30 dB. 12 lasing lines around 1601 nm have also been achieved with a spacing of 0.58 nm. The multiwavelength output powers as high as 108 and 138 mW were obtained in the O- and L-band operations, respectively. The wavelength spacing of the MRFLs is flexibly adjustable, and the peak wavelength of each lasing line is continuously tunable over the wavelength spacing. In addition, the important characteristics of the mixed-cascaded MRFLs, including the linewidth broadening, the signal-to-noise ratio and the conversion efficiency, are discussed.  相似文献   

17.
蒋建  常建华  冯素娟  毛庆和 《物理学报》2010,59(11):7892-7898
针对由YDFL和EDFL作为基频光源的QPM-DFG激光系统,利用PPMgLN晶体的色散关系及其温度特性,有效拓宽了QPM波长接受带宽.模拟结果表明,当采用1550和1060 nm波段的EDFL和YDFL分别作为DFG的信号和抽运光源时,对于相同的中红外波段,满足QPM条件所允许的抽运光波长变化范围远大于信号光波长变化范围.当固定信号光波长为1560 nm时,对于给定的晶体温度,1060 nm波段抽运光的QPM接受带宽超过17 nm,对应于中红外差频光带宽可约180 nm.采用多波长YDFL作为抽运源,单 关键词: 差频产生 准相位匹配 多波长中红外 光纤激光器  相似文献   

18.
Zhou K  Zhou D  Dong F  Ngo NQ 《Optics letters》2003,28(11):893-895
An effective method for achieving a room-temperature multiwavelength erbium-doped fiber ring laser is presented. Simultaneous multiwavelength lasing with 0.5-nm intervals is achieved both experimentally and theoretically by addition of sinusoidal phase modulation in the ring cavity to prevent single-wavelength oscillation.  相似文献   

19.
Xue-Ming Liu   《Optics Communications》2006,260(2):554-559
The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB.  相似文献   

20.
Dong X  Ngo NQ  Shum P  Guan BO  Tam HY  Dong X 《Optics letters》2004,29(4):358-360
We report, for the first time to our knowledge, the presence of concentration-induced nonuniform power in tunable erbium-doped fiber lasers. A theoretical model is proposed with pair-induced quenching taken into account. We obtain good agreement between numerical and experimental results of a high-concentration erbium-doped fiber ring laser with a large tuning range of over 100 nm. These findings are useful for the design of lasers with doped fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号