首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mg-doped Ni nanoparticles with the hexagonal close-packed (hcp) and face-centered cubic (fcc) structure have been synthesized by sol-gel method sintered at different temperatures in argon atmosphere. The sintering temperature played an important role in the control of the crystalline phase and the particle size. The pure hcp Mg-doped Ni nanoparticles with average particle size of 6.0 nm were obtained at 320 °C. The results indicated that the transition from the hcp to the fcc phase occurred in the temperature range between 320 °C and 450 °C. Moreover, the VSM results showed that the hcp Mg-doped Ni nanoparticles had unique ferromagnetic and superparamagnetic behavior. The unsaturation even at 5000 Oe is one of the superparamagnetic characteristics due to the small particle size. From the ZFC and FC curves, the blocking temperature TB of the hcp sample (6.0 nm) was estimated to be 10 K. The blocking temperature was related to the size of the magnetic particles and the magnetocrystalline anisotropy constant. By theoretical calculation, the deduced particle size was 6.59 nm for hcp Mg-doped Ni nanoparticles which was in agreement with the results of XRD and TEM.  相似文献   

2.
Ni nanoparticles were prepared via thermal decomposition of nickel acetate tetrahydrate in the presence of long-chain amines, which acted as both solvents and reducing agents. By tuning the reaction temperature, Ni nanostructures with either hcp or fcc crystal structure were obtained. In principle, higher temperatures favored the formation of hcp nanoparticles. The employment of additional surfactants such as 1-adamantanecarboxylic acid and trioctylphosphine-oxide facilitated the tuning of the particles’ growth limit. The size of the particles varied between 5 and 120 nm. The magnetic features of fcc-Ni nanoparticles were quite similar to the corresponding ‘bulk’ ones. On the other hand, the hcp-Ni particles showed weak magnetic features, reflected by low magnetization values, the absence of saturation magnetization and by blocking temperatures far below room temperature.  相似文献   

3.
Silver–nickel alloy nanoparticles with an average size of 30–40 nm were synthesized by chemically reducing the mixture of silver and nickel salts using sodium borohydride. The structure and the magnetic properties of the alloy samples with different compositions were investigated. The phase stability of the material was analysed after annealing the sample in vacuum at various temperatures. The material exhibits single fcc phase which is stable up to 400 °C and Ni precipitation sets in when the sample is annealed to 500 °C. The thermal analysis using DSC was carried out to confirm the same. The alloy compositions are found to be in close correlation with the metal salt ratios in the precursors. The synthesized samples exhibit weak paramagnetic to ferromagnetic behaviour. The magnetic measurements reveal that by adjusting the precursor ratio, the Ni content in the material can be altered and hence its magnetic properties tailored to suit specific requirements. The formation of Ag–Ni alloy is confirmed by the observed Curie temperature from the magneto thermogram. Annealing the sample helps to produce significant enhancement in the magnetization of the material.  相似文献   

4.
Nickel nanoparticles were prepared by decomposition of the organometallic precursor Ni(COD)2 (COD=cycloocta-1,5-diene) dissolved in organic media in the presence of anthranilic acid as stabilizer. Transmission electron microscopy revealed nickel nanoparticles with a mean size of 4.2 ± 1.1 nm and selected area electron diffraction showed the formation of fcc nickel. FTIR spectroscopy confirmed the presence of modified anthranilic acid on the surface of the Ni nanoparticles suggesting that it is able to interact with the metal particles. The magnetic response of the nanoparticles was established as being of superparmagnetic character, for which a detailed quantitative analysis resulted in a mean magnetic moment of 2652 μB per particle together with a blocking temperature of 32 K.  相似文献   

5.
Core–shell bimetallic Au@Ni nanoparticles, with gold cores and thin nickel shells with overall size less than 10 nm, are synthesized and stabilized in pure cubic (fcc) and hexagonal (hcp) phase. Due to their unique crystal, electronic, and geometric structure, they show interesting magnetic and chemical properties. The Au@Nifcc is magnetic, whereas Au@Nihcp is non‐magnetic. Both the bimetallic nanostructures are stable to surface oxidation until 150 °C and show excellent catalytic activity for p‐nitrophenol reduction reaction.  相似文献   

6.
A simple solution-phase approach has been developed to fabricate nickel (fcc) and cobalt (hcp) nanoparticles with narrow size distribution at 160 °C, in which dimethylformamide (DMF) acts as not only as solvent but also as reductant. The resultant samples are characterized by XRD and TEM to depict the phase and morphology. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors and the enhanced coercivity (Hc) and decreased saturation magnetization (Ms) in contrast to their respective bulk materials.  相似文献   

7.
This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ~9.5 nm virtually monodispersed nickel ferrite (NiFe2O4) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe2O4 particles at nano scale for the first time. It is found that each NiFe2O4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe2O4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe2O4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe2O4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.  相似文献   

8.
Transmission electron microscopy, electron diffraction, and vibrating-sample magnetometry are used to show that a metastable hcp structure can form in both nickel and Ni-Pd alloy films during alternating sputtering of the Ni and Pd components of composite targets. The hcp lattice parameters increase monotonically when the palladium content in a sputtered target increases in the range 0–75%. The ratio of the hcp lattice parameters c/a is close to the ideal ratio for the hcp lattice (1.63) within the limits of experimental error. In the as-deposited state, nickel and Ni-Pd alloy films with an hcp structure have no magnetic moment. Upon annealing, the films transform into a ferromagnetic state with an fcc structure. The concentration dependence of the lattice parameter of the fcc solid solution a 0 is found to exhibit a positive deviation from Vegard’s law, which is characteristic of alloys with a concave liquidus line.  相似文献   

9.
Fused silica plates have been implanted with 40 keV Co+ or Ni+ ions to high doses in the range of (0.25–1.0) × 1017 ions/cm2, and magnetic properties of the implanted samples have been studied with ferromagnetic resonance (FMR) technique supplemented by transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. The high-dose implantation with 3d-ions results in the formation of cobalt and nickel metal nanoparticles in the irradiated subsurface layer of the SiO2 matrix. Co and Ni nanocrystals with hexagonal close packing and face-centered cubic structures have a spherical shape and the sizes of 4–5 nm (for cobalt) and 6–14 nm (for nickel) in diameter. Room-temperature FMR signals from ensembles of Co and Ni nanoparticles implanted in the SiO2 matrix exhibit an out-of-plane uniaxial magnetic anisotropy that is typical for thin magnetic films. The dose and temperature dependences of FMR spectra have been analyzed using the Kittel formalism, and the effective magnetization and g-factor values have been obtained for Co- and Ni-implanted samples. Nonsymmetric FMR line shapes have been fitted by a sum of two symmetrical curves. The dependences of the magnetic parameters of each curve on the implantation dose and temperature are presented.  相似文献   

10.
11.
We report a novel technique for the formation of metal nanoparticles, based on electrolysis of the alcogels containing metal chlorides. The alcogel was formed from TEOS, water, ethanol, and nickel chloride, and subjected to galvanostatic electrolysis. This resulted in successful formation of Ni nanoparticles inside the silica gel. Average particle size of FCC Ni lies between 18 and 20 nm. The formation of tetragonal nickel (a sub-oxide of nickel) as well as NiO were also detected by XRD and SAED. The resistivity measurements showed that the nickel nanoparticles were separated from each other by Ni(O) present between them. Magnetic studies based on ZFC and FC measurements below room temperature (up to 5 K) and above room temperature (up to 700 K) were conducted using SQUID and Magnetic TGA, respectively, which showed strong magnetic irreversibility as attributable to exchange interaction between metallic and oxide phases and mutual interactions among metallic particles in the network structure. The blocking temperature (~600 K) of the samples was above room temperature. M–H studies based on VSM showed an increase in magnetic coercivity with the formation of NiO. A magnetic transition associated with tetragonal nickel was seen at 10 K.  相似文献   

12.
The stability of the ferromagnetic state in Fe, Co, and Ni metals under high pressure is investigated using generalized gradient approximation (GGA) and GGA+U within the density functional theory (DFT). It is found that the ferromagnetic state under pressure is very different for Fe, Co, and Ni metals, and is closely associated with the crystal structure. In the case of Fe, a ferromagnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at pressure around 12 and 115 GPa for GGA and GGA+U, respectively. For Co, the phase transition from a ferromagnetic hcp to a nonmagnetic fcc is found around 107 GPa for GGA. In contrast to Fe and Co, a ferromagnetic fcc state in Ni is maintained even at 200 GPa. The calculated results suggest that the suppression of ferromagnetism in Fe, Co, and Ni is due to pressure-induced decrease of the density of state at the Fermi level.  相似文献   

13.
To demonstrate the potential of nuclear magnetic resonance (NMR) spectroscopy for investigating detailed structural properties in ferromagnetic materials, three different particle sized cobalt (Co) powders have been ball milled for 24 h are accurately characterised by internal-field 59Co NMR. The 59Co NMR spectra show distinct resonance bands corresponding to the different Co sites, face-centred-cubic (fcc), hexagonal-close-packed (hcp) and stacking faults (sfs), in Co metal powders. The hcp+fcc→hcp phase transition encouraged by ball-milling was observed and quantitative values for each Co environment were obtained.  相似文献   

14.
The electron microscopy investigations of Pd, Ni, and Ni-Pd alloy films are carried out. The films were produced by laser sputtering of one- and two-element targets. It is shown that, in the case of alternate deposition of nickel and palladium, polycrystalline films with a metastable hcp lattice are formed. The hcp lattice parameters increase monotonically with increasing palladium content in the film. As a result of the annealing, Ni and Ni-Pd alloy films acquire an equilibrium fcc structure. A positive deviation from Vegard’s law occurs for the dependence of the lattice parameter of the solid solution on the Pd concentration. The as-prepared Ni and Ni-Pd alloy films with the hcp structure are characterized by the absence of a magnetic moment. The transition into the ferromagnetic state occurs after annealing, and hysteresis is observed upon magnetization reversal.  相似文献   

15.
In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).  相似文献   

16.
In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20–30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 °C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.  相似文献   

17.
The present work reports a facile and rapid microwave-assisted route to synthesize nickel nanowires with a necklace-like morphology and lengths up to several hundreds of microns. The wires consist of many crystallites with an average size of 25 ± 2 nm. The synthesis does not use templates or magnetic fields and needs only 6 min, which is more than 480 times faster than that needed for Ni wires prepared at 180 °C using conventional heating. Nickel nanostructures with various morphologies including spheres, chains and irregular particles with porous surfaces can also be obtained by adjusting reaction parameters. Polyvinylpyrrolidone (PVP) is found to be vital for the formation of the one-dimensional chains and a high concentration of PVP smoothes their surfaces to result in the appearance of wires. This rapid one-pot procedure combines the formation of nanoparticles, their oriented assembly into chains, and the subsequent shaping of wires. The Ni nanostructures show variable magnetic properties. The prepared nickel wires have a high mechanical stability and exhibit much higher coercivity than bulk nickel, Ni nanoparticles and their aggregations, which promise potential applications in micromechanical sensors, memory devices and other fields.  相似文献   

18.
By constrained spin-density functional calculations we estimate the relative role of the longitudinal and transversal fluctuations of the magnetic moments in the series of 3d metals (bcc Fe, hcp and fcc Co, and fcc Ni) for weak excitations from the ferromagnetic ground state. It is shown that the importance of longitudinal fluctuations strongly varies from relatively small in bcc Fe to large in fcc Ni. This means that a consistent adiabatic treatment of the low-energy spin fluctuations should include independent longitudinal fluctuations.  相似文献   

19.
The ZnO:Ni2+ nanoparticles of mean size 2-12 nm were synthesized at room temperature by the simple co-precipitation method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The wurtzite structure of ZnO gradually degrades with the increasing Ni doping concentration and an additional NiO-associated diffraction peak was observed above 15% of Ni2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Ni2+ doping concentration was investigated using a vibrating sample magnetometer (VSM). Initially, these nanoparticles showed strong ferromagnetic behavior, however, at higher doping percentage of Ni2+, the ferromagnetic behavior was suppressed and paramagnetic nature was observed. The enhanced antiferromagnetic interaction between neighboring Ni-Ni ions suppressed the ferromagnetism at higher doping concentrations of Ni2+.  相似文献   

20.
Ni2Y and Nd–Fe–Nb–B catalysts were used for the processing of nanoparticles by arc discharge between graphite electrodes. The products were collected from the cathode (deposit and collar) and reactor walls (soot). The ferromagnetic nanoparticles have size in the range of 10–50 nm and are encapsulated in carbon shells. The chemical composition, structure and magnetic properties of the nanoparticles have been studied. For the Ni2Y catalyst we found that the arc discharge results in decomposition of the intermetallic Ni2Y phase and formation of Ni nanoparticles encapsulated in carbon shells in the collar and soot, whereas yttrium oxide was found in the deposit. For the Nd–Fe–Nb–B catalysts the magnetic properties depend on the collection place and erosion rate. Fe and Fe–Nd–Nb nanoparticles were found in the soot and deposit, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号