首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In the present work, three-dimensional turbulent non-premixed oblique slot-jet flames impinging at a wall were investigated using direct numerical simulation (DNS). Two cases are considered with the Damköhler number (Da) of case A being twice that of case B. A 17 species and 73-step mechanism for methane combustion was employed in the simulations. It was found that flame extinction in case B is more prominent compared to case A. Reignition in the lower branch of combustion for case A occurs when the scalar dissipation rate relaxes, while no reignition occurs in the lower branch for case B due to excessive scalar dissipation rate. A method was proposed to identify the flame quenching edges of turbulent non-premixed flames in wall-bounded flows based on the intersections of mixture fraction and OH mass fraction iso-surfaces. The flame/wall interactions were examined in terms of the quenching distance and the wall heat flux along the quenching edges. There is essentially no flame/wall interaction in case B due to the extinction caused by excessive turbulent mixing. In contrast, significant interactions between flames and the wall are observed in case A. The quenching distance is found to be negatively correlated with wall heat flux as previously reported in turbulent premixed flames. The influence of chemical reactions and wall on flow topologies was identified. The FS/U and FC/U topologies are found near flame edges, and the NNN/U topology appears when reignition occurs. The vortex-dominant topologies, FC/U and FS/S, play an increasingly important role as the jet turbulence develops.  相似文献   

2.
In this paper, the flame-wall interaction of reacting diesel spray under engine like conditions is investigated using large eddy simulations. The aim of this study is to understand the influence of the distance between the wall and the spray nozzle on the air entrainment rate, which is a key variable in formation/oxidation process of soot. Three experimental cases are investigated, a free jet case and two wall impingement cases with a distance from nozzle to wall of 30 mm and 50 mm, which are considered as characteristic wall impingement distances for light- and heavy-duty bores in diesel engines, respectively. The optical soot measurements imply a positive influence of wall on the rate of soot oxidation. Numerical simulations are employed to elucidate importance of different mechanisms for the air entrainment, i.e., air entrainment prior to flame lift-off position, enhanced mixing due to the wall impingement and enhanced mixing by the entrainment wave. The results show that oxidation process after the end of injection is driven by a different mixing mechanism depending on the distance to the wall. The 30 mm case resulted in a “mixing boost”, where the dominant mixing mechanism is the wall impingement vortex mixing, which gives rise to the fastest soot decay among the cases. The mixing in the 50 mm case is governed by a late wall impingement vortex mixing, giving rise to a low, but a constant air entrainment rate, i.e., a “mixing plateau”. The free jet case resulted in mixing governed by the entrainment wave mechanism. Both wall impingement cases have faster soot oxidation rate compared with the free jet case, but due to a different underlying mixing process. LES is shown to be able to replicate the line-of-sight measurements of natural OH* chemiluminescence and distribution of soot region from the optical soot diagnostics.  相似文献   

3.
Time dependences of temperature distributions in a thin metal wall were studied experimentally under two conditions of convective heat transfer in a tank model. In the first case, the vertical working wall was heated from within due to a convective heat flux from the opposite wall heated monotonously, and it was cooled due to heat transfer to the ambient medium. Dependence of the temperature field on a thin wall at the stage of convective flow development was retraced with the help of the thermographic camera and thermocouple sensors. In the second case, the tank wall was heated uniformly by IR radiation from the outside, and non-stationary convective flow and volumetric liquid heating were formed inside. Time dependence of temperature distribution over the wall height is studied. It is shown that the flow structure and convective heat transfer in a fuel layer with free boundary are subjected not only to the buoyancy force, but also to the thermocapillary effect. The local features of the flow affect temperature distribution in a thin wall.  相似文献   

4.
The statistical behaviours of different entropy generation mechanisms in the head-on interaction of turbulent premixed flames with a chemically inert wall within turbulent boundary layers have been analysed using Direct Numerical Simulation data. The entropy generation characteristics in the case of head-on premixed flame interaction with an isothermal wall is compared to that for an adiabatic wall. It has been found that entropy generation due to chemical reaction, thermal diffusion and molecular mixing remain comparable when the flame is away from the wall for both wall boundary conditions. However, the wall boundary condition affects the entropy generation during flame-wall interaction. In the case of isothermal wall, the entropy generation due to chemical reaction vanishes because of flame quenching and the entropy generation due to thermal diffusion becomes the leading entropy generator at the wall. By contrast, the entropy generation due to thermal diffusion and molecular mixing decrease at the adiabatic wall because of the vanishing wall-normal components of the gradients of temperature and species mass/mole fractions. These differences have significant effects on the overall entropy generation rate during flame-wall interaction, which suggest that combustor wall cooling needs to be optimized from the point of view of structural integrity and thermodynamic irreversibility.  相似文献   

5.
We discuss the weak gravitational field created by isolated matter sources in the Randall-Sundrum brane world. For the case of a single wall of positive tension, the field stays localized near the wall if the source is stationary. We calculate the leading Kaluza-Klein corrections to the linearized gravitational field of a nonrelativistic spherical object, which is different from the Schwarzschild solution at large distances. In the case of two branes of opposite tension, linearized Brans-Dicke (BD) gravity is recovered on either wall, with different BD parameters. On the wall with positive tension the BD parameter is larger than 3000 provided that the separation between walls is larger than 4 times the AdS radius. The gravitational field due to shadow matter is also considered.  相似文献   

6.
Heat conduction in single-walled carbon nanotubes(SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes(MWCNTs). The thermal conductivities of the double-walled carbon nanotubes(DWCNTs) with two different temperature control methods are studied by using molecular dynamics(MD) simulations. One case is that the heat baths(HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the interwall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently.This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.  相似文献   

7.
We extend the variational method based on the Gibbs-Bogolioubov inequality to the case of fluids against a wall. We investigate the influence of the softness of the wall on the free energy of the system. For small packing fraction we consider a density expansion. The variational results are compared with the exact ones which are given by a direct expansion of the free energy. A comparison between variational and perturbation methods has been done for small packing fraction and also for a case corresponding to the liquid state. The accuracy of the present extension of the variational method to a surface phenomena is found as good as in the bulk fluid. A very simple expression is given for the change on surface tension when we go from the perfect hard wall to soft repulsive wall.  相似文献   

8.
We calculate the spin density, spin currents and spin torque due to a spin polarized current on a magnetic domain wall juxtaposed to or inserted in a conventional superconductor. The superconductor is part of a heterostructure of the type NSN or FSF. In general, the spin torque exerted on the domain wall is weaker with respect to a normal metal. However, there are regimes where the torque is enhanced with respect to the normal metal. In these regimes the motion of the domain wall is therefore more efficient. A notable case is the passing of an unpolarized current which leads to a finite torque in the case of the superconductor.  相似文献   

9.
《Physics letters. A》1997,229(1):63-71
The interfacial structure in the nematic phase near a wall is studied by means of a method of conditional distribution functions. It was found that with decreasing strength of the wall anchoring potential, the theory predicts a first-order oblique to oblique anchoring transition observed experimentally by Ryschenkow and Kleman. In the case of increasing strength of the solid wall anchoring potential the model predicts homogeneous anchoring.  相似文献   

10.
We have analyzed the dynamics of a classical point particle experiencing elastic reflection from a single periodically oscillating wall and in a dynamic billiard system with reflections from stationary and oscillating walls. In the case of a single wall, the attachment regime is demonstrated in which the particle is almost localized at the wall during a half-period of oscillations and undergoes multiple reflections from it. It has been shown that, when the parameters of the problem are varied in a range that corresponds to a change in the number of consecutive reflections from the same wall, the dependence of the velocity of the reflected particle on these parameters includes discontinuities of the derivative. For the dynamic billiard system, stable regimes of various types with invariable kinetic energy of the particle, as well as regimes of deterministic chaos, have been considered; in the latter case, these discontinuities also play a significant role.  相似文献   

11.
The structure and thermodynamics of a dipolar hard-sphere fluid at a discretely polarized hard wall are investigated using Monte Carlo computer simulation. In contrast to a continuously polarized wall, the discrete case exhibits significantly enhanced adsorption of the fluid at the surface relative to that observed for an unpolarized wall. Significant orientational ordering of the first liquid layer is observed plus correlation with the wall polarization that extends over several layers. The relative potential and free energy are calculated as a function of the polarization angle using thermodynamic integration.  相似文献   

12.
The current-induced domain wall motion was observed experimentally in the case of the domain wall trapped at the semicircular arc within the U shape Ni80Fe20 wire. The measurement of the current-induced domain wall motion was achieved by adding a biased field before switching field and a critical current density was measured. We found two magnetic domain structures in the U pattern. At zero fields, the vortex domain wall nucleated at the semicircular arc of the U pattern. Continuous magnetic state without wall was investigated in near-switching field.  相似文献   

13.
Phase change in ice-water systems in the geometry of horizontal cylindrical annulus with constant inner wall temperature and adiabatic outer wall is modeled with an enthalpy-based mixture model. Solidification and melting phenomena under different temperature conditions are analyzed through a sequence of numerical calculations. In the case of freezing of water, the importance of convection and conduction as well as the influence of cold pipe temperature on time for the complete solidification is examined. As for the case of melting of ice, the influence of the inner pipe wall temperature on the shape of the ice-water interface, the flow and temperature fields in the liquid, the heat transfer coefficients and the rate of melting are analyzed. The results of numerical calculations point to good qualitative agreement with the available experimental and other numerical results.  相似文献   

14.
Arguments for demonstrating the contribution of the ion current in the process of wall potential stabilization at a positive value and the results of some experiments supporting this viewpoint, are presented. It is also shown that the variation in gas pressure leads to a change in the number of possible stabilization modes. It is argued that the values of the stable wall potentials are determined by the secondary emission properties of the wall surface, the tube configuration and the values of the charged particle fluxes to the wall. The wall-cathode and wall-anode capacitances may influence only the direction in which the wall potential will drift during the stabilization process, in the case when two stable values of the wall potential exist.  相似文献   

15.
采用大涡模拟和浸没边界法相结合对不同高度和不同间距横向粗糙元壁面槽道湍流进行了模拟,得到了光滑壁面和粗糙壁面湍流的流向平均速度分布,雷诺剪切应力,脉动速度均方根和近壁区拟序结构。结果发现横向粗糙元降低了流向平均速度,增大了流动阻力,粗糙壁面湍流的雷诺剪切应力大于光滑壁面。粗糙元降低了流向脉动速度,增强了展向和法向脉动速度。粗糙元高度越高,对湍流流动影响越大,而粗糙元间距对湍流统计特性的影响不大。粗糙壁面仍然存在着和光滑壁面类似的条带结构。  相似文献   

16.
We study the modal structure of an acoustic field of a point source as function of channel wall admittance in the case of a two-dimensional channel. The characteristic equation for determining the eigen-values corresponding to the boundary problem is studied in the form of this equation??s dependence on the admittance, which varies in the entire complex plane. All modes, without exception, existing in the channel and forming the source field are classified based on the obtained topography of the characteristic equation. The expressions that describe the amplitudes and spatial distribution of the hydrodynamic modes, attenuation rate (for stable modes), or increment (for unstable modes) were obtained as functions of the wall admittance and flow velocity. It is shown that in addition to the hydrodynamic unstable modes existing downstream from the source, hydrodynamic unstable modes exist upstream from the source at any admittance. They appear only when the admittance has an elastic character. It is shown that hydrodynamic modes are induced only in the case when the source is located close to the wall or on the wall. The amplitude of these modes decreases exponentially with distance from the wall.  相似文献   

17.
The Monte Carlo simulation method introduced by Smith and Triska [J. Chem. Phys.100 (1994) 3019] is extended to the case of a reacting fluid in contact with a hard wall. The fluid structure for both spherical and nonspherical reaction products is discussed for simple models of reacting hard spheres near a hard wall and near a wall interacting via Lennard-Jones (9,3) potential. In the latter case the investigated model assumes that the probability of a chemical reaction changes with a distance from the surface. It is shown that the applied technique is suitable for the study of reacting nonuniform fluids. This work is supported by KBN under the Grant No. 3 T09A 062 10.  相似文献   

18.
The transmission of a circular orifice in the molecular flow range is calculated for the case that the particular state of particles flowing through the orifice is affected by wall collisions. The deactivation of metastable atoms and the neutralisation of charged particles at the orifice tube wall is taken into account. The results give a detailed illustration of the fate of particles passing an extraction orifice, namely the fraction of particles passing without wall collision, the fraction passing after one and after multiple wall reflections as a function of the characteristic dimensions of the orifice and the reflection coefficient.  相似文献   

19.
Ling Zhou  Yue Jiang  Yu-qiang Ma 《Physica A》2009,388(8):1359-1366
Using density functional theory, we investigate the effective interaction between a big colloid immersed in a sea of small colloids and a wall which has different affinity to the small colloids. Steele 10-4-3 potential is introduced to mimic both short-range repulsive and long-range attractive interactions between the wall and the small colloids. It is found that the surface affinity of the wall has a significant influence on the effective interaction. In the short-range repulsive case, the repulsion greatly enhances the big colloid-wall effective attraction, which sensitively depends on the concentration of small colloids, and is not sensitive to the repulsive strength. In the long-range attractive case, both the concentration of small colloids and the attractive strength have great effect on the effective interaction, and with an increase of the attractive strength, a strong repulsion may be induced when the big colloid is close to the wall. In low density limit of small colloids, the present results agree well with those of the Asakura and Oosawa(AO) approximation.  相似文献   

20.
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号