首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an optimal operating strategy problem arising in liner shipping industry that aims to determine service frequency, containership fleet deployment plan, and sailing speed for a long-haul liner service route. The problem is formulated as a mixed-integer nonlinear programming model that cannot be solved efficiently by the existing solution algorithms. In view of some unique characteristics of the liner shipping operations, this paper proposes an efficient and exact branch-and-bound based ε-optimal algorithm. In particular, a mixed-integer nonlinear model is first developed for a given service frequency and ship type; two linearization techniques are subsequently presented to approximate this model with a mixed-integer linear program; and the branch-and-bound approach controls the approximation error below a specified tolerance. This paper further demonstrates that the branch-and-bound based ε-optimal algorithm obtains a globally optimal solution with the predetermined relative optimality tolerance ε in a finite number of iterations. The case study based on an existing long-haul liner service route shows the effectiveness and efficiency of the proposed solution method.  相似文献   

2.
We develop and implement a model for a profit maximizing firm that provides an intermediation service between commodity producers and commodity end-users. We are motivated by the grain intermediation business at Los Grobo—one of the largest commodity-trading firms in South America. Producers and end-users are distributed over a realistic spatial network, and trade with the firm through contracts for delivery of grain during the marketing season. The firm owns spatially distributed storage facilities, and begins the marketing season with a portfolio of prearranged purchase and sale contracts with upstream and downstream counterparts. The firm aims to maximize profits while satisfying all previous commitments, possibly through the execution of new transactions. Under realistic constraints for capacities, network structure and shipping costs, we identify the optimal trading, storing and shipping policy for the firm as the solution of a profit-maximizing optimization problem, encoded as a minimum cost flow problem in a time-expanded network that captures both geography and time. We perform extensive numerical examples and show significant efficiency gains derived from the joint planning of logistics and trading.  相似文献   

3.

In the manufacturing of fattening pigs, pig marketing refers to a sequence of culling decisions until the production unit is empty. The profit of a production unit is highly dependent on the price of pork, the cost of feeding and the cost of buying piglets. Price fluctuations in the market consequently influence the profit, and the optimal marketing decisions may change under different price conditions. Most studies have considered pig marketing under constant price conditions. However, because price fluctuations have an influence on profit and optimal marketing decisions it is relevant to consider pig marketing under price fluctuations. In this paper we formulate a hierarchical Markov decision process with two levels which model sequential marketing decisions under price fluctuations in a pig pen. The state of the system is based on information about pork, piglet and feed prices. Moreover, the information is updated using a Bayesian approach and embedded into the hierarchical Markov decision process. The optimal policy is analyzed under different patterns of price fluctuations. We also assess the value of including price information into the model.

  相似文献   

4.
We are concerned with a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at predetermined candidate sites. We employ Huff’s gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find the optimal solution of this model, we convert it into an equivalent one-level mixed-integer nonlinear program so that it can be solved by global optimization methods. Apart from reporting computational results obtained on a set of randomly generated instances, we also compute the benefit the leader firm derives from anticipating the competitor’s reaction of adjusting the attractiveness levels of its facilities. The results on the test instances indicate that the benefit is 58.33% on the average.  相似文献   

5.
One important problem faced by the liner shipping industry is the fleet deployment problem. In this problem, the number and type of vessels to be assigned to the various shipping routes need to be determined, in such a way that profit is maximized, while at the same time ensuring that (most of the time) sufficient vessel capacity exists to meet shipping demand. Thus far, the standard assumption has been that complete probability distributions can be readily specified to model the uncertainty in shipping demand. In this paper, it is argued that such distributions are hard, if not impossible, to obtain in practice. To relax this oftentimes restrictive assumption, a new distribution-free optimization model is proposed that only requires the specification of the mean, standard deviation and an upper bound on the shipping demand. The proposed model possesses a number of attractive properties: (1) It can be seen as a generalization of an existing variation of the liner fleet deployment model. (2) It remains a mixed integer linear program and (3) The model has a very intuitive interpretation. A numerical case study is provided to illustrate the model.  相似文献   

6.
Model and algorithms for multi-period sea cargo mix problem   总被引:1,自引:0,他引:1  
In this paper, we consider the sea cargo mix problem in international ocean container shipping industry. We describe the characteristics of the cargo mix problem for the carrier in a multi-period planning horizon, and formulate it as a multi-dimensional multiple knapsack problem (MDMKP). In particular, the MDMKP is an optimization model that maximizes the total profit generated by all freight bookings accepted in a multi-period planning horizon subject to the limited shipping capacities. We propose two heuristic algorithms that can solve large scale problems with tens of thousands of decision variables in a short time. Finally, numerical experiments on a wide range of randomly generated problem instances are conducted to demonstrate the efficiency of the algorithms.  相似文献   

7.
We address the concept of an integrated inventory allocation and shipping model for a manufacturer with limited production capacity and multiple types of retailers with different backorder/waiting and delivery costs. The problem is to decide how to allocate and deliver produced items when the total retailer demand exceeds the production capacity, so that total retailer backorder and delivery costs are minimized. Our analytical model provides optimal allocation and shipping policies from the manufacturer’s viewpoint. We also investigate the allocation strategy of a manufacturer competing with other retailers to directly sell to end consumers.  相似文献   

8.
《Optimization》2012,61(12):2601-2618
The three-dimensional open dimension rectangular packing problem (3D-ODRPP) aims to pack a set of given rectangular boxes into a large rectangular container of minimal volume. This problem is an important issue in the shipping and moving industries. All the boxes can be any rectangular stackable objects with different sizes and may be freely rotated. The 3D-ODRPP is usually formulated as a mixed-integer non-linear programming problem. Most existing packing optimization methods cannot guarantee to find a globally optimal solution or are computationally inefficient. Therefore, this paper proposes an efficient global optimization method that transforms a 3D-ODRPP as a mixed-integer linear program using fewer extra 0–1 variables and constraints compared to existing deterministic approaches. The reformulated model can be solved to obtain a global optimum. Experimental results demonstrate the computational efficiency of the proposed approach in globally solving 3D-ODRPPs drawn from the literature and the practical applications.  相似文献   

9.
In this paper, a new non-linear mixed-integer mathematical programming problem is proposed to model a stochastic multi-product closed-loop supply chain (CLSC). The radio frequency identification (RFID) system is implemented in the supply chain to decrease product losses and the overall lead time of transportation while computing the profit derived from internet and conventional sales. The resulting traceable CLSC improves upon the existing literature by allowing us to: (1) boost the incorporation of traceability assumptions in mathematical programming problems so as to enhance the efficiency and visibility of a supply chain, (2) analyze the strategic effects that different internet sale formats have on customers’ evaluations and acquisition choices, and (3) account for the environmental and socio-economical dimension by explicitly formalizing employment-based incomes as part of the profit function. Two meta-heuristic algorithms are introduced to solve the proposed optimization problem, namely, the greedy randomized adaptive search procedure (GRASP) and particle swarm optimization (PSO). Twelve test problems of different sizes are generated and solved using these algorithms. The computational results show that GRASP outperforms PSO in terms of both profit and CPU time values. Finally, a case study in the network marketing industry is presented and managerial implications outlined to show the validity of the proposed model and shed more light on its practical implications.  相似文献   

10.
《Optimization》2012,61(11):1637-1663
We consider the problem of finding an arrangement of rectangles with given areas that minimizes the total length of all inner and outer border lines. We present a polynomial time approximation algorithm and derive an upper bound estimation on its approximation ratio. Furthermore, we give a formulation of the problem as mixed-integer nonlinear program and show that it can be approximatively reformulated as linear mixed-integer program. On a test set of problem instances, we compare our approximation algorithm with another one from the literature. Using a standard numerical mixed-integer linear solver, we show that adding the solutions from the approximation algorithm as advanced starter helps to reduce the overall solution time for proven global optimality, or gives better primal and dual bounds if a certain time-limit is reached before.  相似文献   

11.
Here, we describe a real planning problem in the tramp shipping industry. A tramp shipping company may have a certain amount of contract cargoes that it is committed to carry, and tries to maximize the profit from optional cargoes. For real long-term contracts, the sizes of the cargoes are flexible. However, in previous research within tramp ship routing, the cargo quantities are regarded as fixed. We present an MP-model of the problem and a set partitioning approach to solve the multi-ship pickup and delivery problem with time windows and flexible cargo sizes. The columns are generated a priori and the most profitable ship schedule for each cargo set–ship combination is included in the set partitioning problem. We have tested the method on several real-life cases, and the results show the potential economical effects for the tramp shipping companies by utilizing flexible cargo sizes when generating the schedules.  相似文献   

12.
In this paper, we examine human resource planning decisions made at firms that sell contract-based consulting projects. High levels of uncertainty in deals and revenue forecasts make it challenging for consulting firms to hire the right people to staff their projects. We present a human resource planning model using concepts from robust optimization to allow companies to dynamically make hiring decisions that maximize profit while remaining as flexible as possible, and demonstrate potential profit improvements through simulation on real data.  相似文献   

13.
Modern high-tech products experience rapid obsolescence. Capacity investments must be recouped during the brief product lifecycle, during which prices fall continuously. We employ a multiplicative demand model that incorporates price declines due to both market heterogeneity and product obsolescence, and study a monopolistic firm’s capacity decision. We investigate profit concavity, and characterize the structure of the optimal capacity solution. Moreover, for products with negligible variable costs, we identify two distinct strategies for capacity choice demarcated by an obsolescence rate threshold that relates both to market factors and capacity costs. Finally, we empirically test the demand model by analyzing shipping and pricing data from the PC microprocessor market.  相似文献   

14.
In order to design a coverage-type service network that is robust to the worst instances of long-term facility loss, we develop a facility location–interdiction model that maximizes a combination of initial coverage by p facilities and the minimum coverage level following the loss of the most critical r facilities. The problem is formulated both as a mixed-integer program and as a bilevel mixed-integer program. To solve the bilevel program optimally, a decomposition algorithm is presented, whereby the original bilevel program is decoupled into an upper level master problem and a lower level subproblem. After sequentially solving these problems, supervalid inequalities can be generated and appended to the upper level master in an attempt to force it away from clearly dominated solutions. Computational results show that when solved to optimality, the bilevel decomposition algorithm is up to several orders of magnitude faster than performing branch and bound on the mixed-integer program.  相似文献   

15.
研究每个周期的需求随机增加的情形下的容量扩充问题,建立起切合实际的有限周期随机动态规划模型及在期现值准则下的无限周期随机动态规划模型,进而探索生产单一产品的公司在面对随机增加的市场需求时,风险中立的管理者该如何扩充其生产容量,才能使得其公司在折扣意义下的总期望利润最大.研究无限阶段的容量扩充问题,得出某种约束条件下的优化策略解,给公司管理者提供了其长期可持续发展的优化策略和依据.  相似文献   

16.
This paper examines air container renting and cargo loading problems experienced by freight forwarding companies. Containers have to be booked in advance, in order to obtain discounted rental rates from airlines; renting or returning containers on the day of shipping will incur a heavy penalty. We first propose a mixed-integer model for the certain problem, in which shipment information is known with certainty, when booking. We then present a two-stage recourse model to handle the uncertainty problem, in which accurate shipment information cannot be obtained when booking, and all cargoes have to be shipped without delay. The first-stage decision is made at the booking stage, to book specific numbers of different types of containers. The second-stage decision is made on the day of shipping, depending on the extent to which the uncertainty has been realized. The decisions include number of additional containers of different types that are required to be rented, or the number of containers to be returned, under the scenario that might occur on the day of shipping. We then extend the recourse model into a robust model for dealing with the situation in which cargoes are allowed to be shipped later. The robust model provides a quantitative method to measure the trade-off between risk and cost. A series of experiments demonstrate the effectiveness of the robust model in dealing with risk and uncertainty.  相似文献   

17.
Recent advances in customer choice analysis demonstrated the strong impact of compromise alternatives on the behaviour of decision-makers in a wide range of decision situations. Compromise alternatives are characterized by an intermediate performance on some of the relevant attributes. For instance, price compromises are well known in the sense that customers tend to buy neither the cheapest, nor the most expensive alternative, but the mid-priced one. However, thus far, the literature on product line optimization has not considered such context effects.In this paper, we propose a model-based approach for optimal product line selection which incorporates customers’ preferences for compromise alternatives. We consider customer choice in a realistic, sophisticated fashion by applying an established utility model that integrates compromise variables into a multinomial logit model. We formulate the resulting optimization problem as a mixed-integer linear program. The challenging feature for modelling – making the formulation substantially more complicated than existing ones without compromises – are the endogenous effects of selected products on other alternatives’ utilities that need to be adequately captured via compromise variables. Based on data we collected by a stated choice experiment in a retail setting, we perform a computational study and demonstrate the superiority of our product line selection approach compared to a reference model that does not take compromises into account. Even under uncertainty of the estimated utility parameters, profit gains of, on average, 23% can be achieved in our experimental setting.  相似文献   

18.
We study an inventory system that replenishes its stock through two shipping services, of which the non-committed shipping service can only ship up to a random capacity that is not known until shipment. By transforming the non-convex optimization in the dynamic program to a convex optimization problem, we show that the optimal policy for each period is determined by a quota for the non-committed shipping and a base-stock level for the committed shipping.  相似文献   

19.
This paper develops an adverse selection model for a two-stage supply chain with one supplier, one retailer, and a potential outside entrant supplier who makes a partially substitutable product. The work is different from most research on entry deterrence that only considers a single-stage model. Our main interest is to investigate how the incumbent supplier can strategically maximize her profit by a wholesale pricing policy when facing the potential entrant. We focus on a model where the entrant supplier will sell her product through the same incumbent retailer. We derive the optimal decisions for each player and study the comparative statics of the equilibrium. To investigate how the supply chain structure may affect the deterrence strategy of the incumbent supplier, we also consider three alternative models with different channel structures, when both suppliers sell their products directly, when the entrant has another independent retailer, and when the entrant sells her product directly. Through the comparison, we find that the existence of the common downstream retailer often enhances the deterring motivation of the incumbent supplier.  相似文献   

20.
In the standard mean–variance portfolio selection approach, several operative features are not taken into account. Among these neglected aspects, one of particular interest is the finite divisibility of the (stock) assets, i.e. the obligation to buy/sell only integer quantities of asset lots whose number is pre-established. In order to consider such a feature, we deal with a suitably defined quadratic mixed-integer programming problem. In particular, we formulate this problem in terms of quantities of asset lots (instead of, as usual, in terms of capital per cent quotas). Secondly, we provide necessary and sufficient conditions for the existence of a non-empty mixed-integer feasible set of the considered programming problem. Thirdly, we present some rounding procedures for finding, in a finite number of steps, a feasible mixed-integer solution which is better than the one detected by the necessary and sufficient conditions in terms of the value assumed by the portfolio variance. Finally, we perform an extensive computational experiment by means of which we verify the goodness of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号