首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polychromatic action spectrum for the induction of an ultraviolet-absorbing/screening mycosporine-like amino acid (MAA) has been determined in a filamentous and heterocystous nitrogen-fixing rice-field cyanobacterium, Anabaena sp. High-performance liquid chromatographic (HPLC) studies revealed the presence of only one type of MAA, which was identified as shinorine, a bisubstituted MAA containing both glycine and serine groups having a retention time at 2.8 min and an absorption maximum at 334 nm. Exposure of cultures to simulated solar radiation in combination with various cut-off filters (WG 280, 295, 305, 320, 335, 345, GG 400, 420, 455, 475, OG 515, 530, 570, RG 645, 665 and a broad-band filter, UG 11) clearly revealed that the induction of the MAA takes place only in the UV range. Photosynthetic active radiation (PAR) had no significant impact on MAA induction. The ratio of the absorption at 334 nm (shinorine) to 665 nm (chlorophyll a) and the action spectrum also showed the induction of MAA to be UV dependent peaking in the UV-B range at around 290 nm. The results indicate that the studied cyanobacterium, Anabaena sp. may protect itself from deleterious short wavelength solar radiation by its ability to synthesize a mycosporine-like amino acid in response to UV-B radiation and thereby screen the negative effects of UV-B.  相似文献   

2.
Abstract— A meter for measuring the skin sunburn effectiveness of a light source is being used in an extensive network to provide solar data for correlation to skin cancer incidence. The solar radiation measured also affects a wide variety of organisms. The intensity of this band of radiation is also strongly affected by ozone concentration so that the output correlates with ozone thickness.
The meter spectral response is essentially the excitation spectrum of magnesium tungstate phosphor which is similar to the erythema action spectrum (EAS). In addition to the waterproofed, dose reading embodiment, a cheaper, easily transportable, batteryless, intensity reading meter with the same spectral response has been developed.
The deviation of any sunburn meter from the ideal erythema action spectrum can be calculated by convolution of a series of solar spectra against each of the two response spectra. Plotting the change in output against the change in input results in straight lines. Either log-log coordinates are required, or, as is done here, decibels can be used on linear coordinates. The angle between the straight lines is taken as the error. An error angle of 6.5° is calculated for the present meter.  相似文献   

3.
Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of "solar UV-B" and "supplemental UV-B" effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more "biologically effective" shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B-absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.  相似文献   

4.
UV-B EFFECTS ON TERRESTRIAL PLANTS   总被引:15,自引:0,他引:15  
The potential impacts of an increase in solar UV-B radiation reaching the Earth's surface due to stratospheric ozone depletion have been investigated by several research groups during the last 15 years. Much of this research has centered on the effects of plant growth and physiology under artificial UV-B irradiation supplied to plants in growth chambers or greenhouses. Since these artificial sources do not precisely match the solar spectrum and due to the wavelength dependency of photobiol-ogical processes, weighting functions, based on action spectra for specific responses, have been developed to assess the biological effectiveness of the irradiation sources and of predicted ozone depletion. Recent experiments have also utilized artificially produced ozone cuvettes to filter natural solar radiation and simulate an environment of reduced UV-B for comparative purposes. Overall, the effectiveness of UV-B varies both among species and among cultivars of a given species. Sensitive plants often exhibit reduced growth (plant height, dry weight, leaf area, etc.), photosynthetic activity and flowering. Competitive interactions may also be altered indirectly by differential growth responses. Photosynthetic activity may be reduced by direct effects on photosynthetic enzymes, metabolic pathways or indirectly through effects on photosynthetic pigments or stomatal function. The fluence response of these changes has yet to be clearly demonstrated in most cases. Plants sensitive to UV-B may also respond by accumulating UV-absorbing compounds in their outer tissue layers, which presumably protect sensitive targets from UV damage. Several key enzymes in the biosynthetic pathways of these compounds have been shown to be specifically induced by UV-B irradiation. Few studies have documented the effects of UV-B on total plant yield under field conditions. One notable exception is a 6-yr study with soybean demonstrating harvestable yield reductions under a simulated 25% ozone depletion. These effects are further modified by prevailing microclimatic conditions. Plants tend to be less sensitive to UV-B radiation under drought or mineral deficiency, while sensitivity increases under low levels of visible light. Further studies are needed to understand the mechanisms of UV-B effects and the interactions with present stresses and future projected changes in the environment.  相似文献   

5.
Several ultraviolet (UV) action spectra that typify the responses of higher plants to irradiation by wavelengths between 280 nm and 380 nm are shown. An attempt is made to generate common spectra that may be used, at least temporarily, to represent the effects of UV on such important biological parameters as photosynthesis. The goal is to provide an estimate of plant response to solar UV and to the potential increase in ground level UV postulated for a depleted stratospheric ozone layer. Solar plant damage effectiveness curves are generated under "normal" solar UV conditions, and under an assumed UV increase corresponding to a 16% depletion in total ozone. Additional effects due to ozone depletion are concentrated in the UV-B region, especially at wavelengths between about 297 nm and 315 nm. Common features of these effectiveness curves are noted, and limitations are pointed out. As expected, no common spectrum has been found that can substitute for any specific spectrum nor that is unique enough to provide more than a limited first approximation of a plant damage spectrum. Additional information must be generated to fulfill this need.  相似文献   

6.
Abstract— We present a new method for calculating the effects of reduction of atmospheric ozone upon induction of nonmelanoma skin cancer. These estimates are based upon several recent experimental improvements: a model for the atmospheric penetration of UV-B; measurements of the transmission of this radiation by human epidermis; a precise action spectrum for genetic effects (mutation) in Escherichia coli , which was corrected for finite slit width. The calculated radiation amplification factor or percent increase in exposure per one percent decrease in atmospheric ozone is constant at 1.7 for solar zenith angles = 70° and decreases only with larger values of this angle. Thus the estimated increase applies to all heavily populated areas. of the globe. The value is robust: it is almost the same when the albedo is reduced from 0.2 to 0.1 or when the epidermal transmission is assumed to be about fourfold greater.  相似文献   

7.
Albino hairless mice (Skh: HR-1) exposed chronically to sub-erythemal doses of UV radiation display physical, visible and histological alterations. Using narrow bandwidth radiation covering the UV radiation spectrum from 280-380 nm, the wavelength dependence of these alterations was determined. The wavelength dependence spectra indicate that for all but one parameter measured (skin sagging), UV-B radiation is considerably more efficient than UV-A radiation in producing changes in the skin. However, in natural sunlight there is considerably more UV-A than UV-B radiation, providing the potential for UV-A to have a larger contribution to skin damage than UV-B. This argues in favor of using broad spectrum photoprotective agents to shield the skin adequately from UV-induced aging. The spectra were also used to develop potential associations among events by determining which events occur at similar wavelengths. There seems to be a correspondence between mouse visible skin wrinking (UV-B event) and two histological events: increase in glycosaminoglycans and alteration in collagen. There was no obvious correspondence among UV-A-induced events.  相似文献   

8.
Limitations in the realism of currently available lamps mean that enhancement errors in outdoor experiments simulating UV-B radiation effects of stratospheric ozone depletion can be large. Here, we assess the magnitude of such errors at two Finnish locations, during May and June, under three cloud conditions. First we simulated solar radiation spectra for normal, compared with 10% and 20% ozone depletion, and convoluted the daily integrated solar spectra with eight biological spectral weighting functions (BSWFs) of relevance to effects of UV on plants. We also convoluted a measured spectrum from cellulose-acetate filtered UV-B lamps with the same eight BSWFs. From these intermediate results we calculated the enhancement errors. Differences between locations and months were small, cloudiness had only a minor effect. This assessment was based on the assumption that no extra enhancement compensating for shading of UV radiation by lamp frames is performed. Under this assumption errors between spectra are due to differences in the UV-B effectiveness rather than differences in the UV-A effectiveness. Hence, conclusions about plant growth from past UV-supplementation experiments should be valid. However, interpretation of the response of individual physiological processes is less secure, so results from some field experiments with lamps might need reassessment.  相似文献   

9.
Abstract— We have used a flashlamp driven tunable dye laser combined with angle tuned frequency doubling crystals for producing UV-B radiation for action spectra studies of various organisms. Optimum UV-B power generation is needed to provide biologically effective doses at wavelengths greater than 300 nm. Optimizing power will also serve to lengthen the lifetime of dyes and other laser components at shorter wavelengths where UV-B output is more than adequate. While much information is available on dyes and dye performance from manufacturers, little information is available on the use of dyes and dye mixtures for providing the continuous high power spectrum of wavelengths necessary for biological UV action spectroscopy. We have examined a number of dyes and dye mixtures for optimal laser performance at wavelengths from 260 to 330 nm. The dyes and dye mixtures discussed here provide adequate power output in the UV-B wavelength range and have allowed us to perform numerous UV-B action spectra studies using the tunable dye laser.  相似文献   

10.
Abstract— The partial destruction of the earth's protective ozone layer has raised concerns about the impact of increased UV radiation on the earth's biological systems. In this study, polychromatic light sources were employed to observe the biological responses of the soil nematode Caenorhabditis elegans to simulated solar UV. Using various filter combinations, action spectra were constructed that approximated those generated previously with monochromatic radiation. In both cases, a mutant strain ( rad-3 ) progressively lost its hypersensitivity as shorter wavelengths were filtered out. In addition, both wild type and radiation-sensitive ( rad ) mutants were irradiated with several combinations of filtered light sources in the presence and absence of two exogenous photosensitizers (ethidium bromide and bromodeoxyuridine). Treatment with either of the introduced photosensitizers increased photosensitivity to solar UV. Solar UV also induced a fluence-dependent reduction in fertility in wild-type animals. These experiments extend previous data and substantially expand our understanding of the biological responses of C. elegans to solar radiation.  相似文献   

11.
Increases in UV-B radiation resulting from ozone depletion during austral spring could potentially alter the balance of the Southern Ocean marine ecosystem. A quantitative assessment ol the effects of UV-B enhancement requires knowledge of (1) the wavelength-dependent fluxes of UV-B in the upper ocean, (2) action spectra for UV-B damage to Antarctic phytoplankton and zooplankton, and (3) depth-dependent distributions and residence times of Southern Ocean phytoplankton and zooplankton during austral spring. Unfortunately, only limited data arc currently available to address this impact directly. To provide some of the information required for such an assessment, available data regarding plankton distributions and their photophysiological characteristics have been summarized. A preliminary assessment of the available literature suggests that Antarctic phytoplankton and krill receive very low doses of UV-B during austral spring. The high spectral attenuation coefficients associated with the environments in which most plankton arc found during springtime precludes the possibility of UV damage. Future research directions are described which should provide a better understanding of the ecological consequences of the "ozone hole" which resides over the Antarctic continent during austral spring.  相似文献   

12.
Biological action spectra are commonly used to assess health and ecosystem responses to increases in spectral ultraviolet (UV) irradiances resulting from stratospheric ozone (O3) reductions. For each action spectrum, a normalized sensitivity coefficient (the radiation amplification factor [RAF]) can be calculated as the relative increase in biologically active UV irradiance for a given relative decrease in the atmospheric O3 column amount. We use a detailed radiative transfer model to calculate the dependence of RAF on the O3 column amount and the solar zenith angle (and, therefore, implicitly on latitude and season) for several commonly used action spectra. A simple analytical model is used to interpret the results in terms of the semilogarithmic slope of the action spectra in the UV-B and UV-A wavelength ranges. We also show that RAF may be overestimated substantially if the UV-A portion of an action spectrum is significant but is neglected. This is illustrated using several idealized action spectra as well as published action spectra for plant responses to UV irradiation. Generally, if the portion of an action spectrum measured longward of approximately 300 nm spans less than about two orders in magnitude in its sensitivity, significant errors in the estimated RAF may ensue, and the use of this action spectrum in O3-related studies can be compromised.  相似文献   

13.
We investigated the wavelength dependence of cyclobutane thymine dimer and (6-4)photoproduct induction by monochromatic UV in the region extending from 150 to 365 nm, using an enzyme-linked immunosorbent assay with two monoclonal antibodies. Calf thymus DNA solution was irradiated with 254-365 nm monochromatic UV from a spectrograph, or with 220-300 nm monochromatic UV from synchrotron radiation. Thymine dimers and (6-4)photoproducts were fluence-dependently induced by every UV below 220 nm extending to 150 nm under dry condition. We detected the efficient formation of both types of damage in the shorter UV region, as well as at 260 nm, which had been believed to be the most efficient wavelength for the formation of UV lesions. The action spectra for the induction of thymine dimers and (6-4)photoproducts were similar from 180 to 300 nm, whereas the action spectrum values for thymine dimer induction were about 9- and 1.4-fold or more higher than the values for (6-4)photoproduct induction below 160 nm and above 313 nm, respectively.  相似文献   

14.
We analysed and compared the functioning of UV-B screening pigments in plants from marine, fresh water and terrestrial ecosystems, along the evolutionary line of cyanobacteria, unicellular algae, primitive multicellular algae, charophycean algae, lichens, mosses and higher plants, including amphibious macrophytes. Lichens were also included in the study. We were interested in the following key aspects: (a) does the water column function effectively as an 'external UV-B filter'?; (b) do aquatic plants need less 'internal UV-B screening' than terrestrial plants?; (c) what role does UV screening play in protecting the various plant groups from UV-B damage, such as the formation of thymine dimers?; and (d) since early land 'plants' (such as the predecessors of present-day cyanobacteria, lichens and mosses) experienced higher UV-B fluxes than higher plants, which evolved later, are primitive aquatic and land organisms (cyanobacteria, algae, lichens, mosses) better adapted to present-day levels of UV-B than higher plants? Furthermore, polychromatic action spectra for the induction of UV screening pigments of aquatic organisms have been determined. This is relevant for translating 'physical' radiation measurements of solar UV-B into 'biological' and 'ecological' effects. From the action spectra, radiation amplification factors (RAFs) have been calculated. These action spectra allow us to determine any mitigating or antagonistic effects in the ecosystems and therefore qualify the damage prediction for the ecosystems under study. We summarize and discuss the main results based on three years of research of four European research groups. The central theme of the work was the investigation of the effectiveness of the various screening compounds from the different species studied in order to gain some perspective of the evolutionary adaptations from lower to higher plant forms. The induction of mycosporine-like amino acids (MAAs) was studied in the marine dinoflagellate Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in three photosynthetic organisms, representing very different taxonomic groups and different habitats. In ultraviolet photobiology, action spectra mainly serve two purposes: (1) identification of the molecular species involved in light absorption; and (2) calculation of radiation amplification factors for assessing the effect of ozone depletion. Radiation amplification factors (RAFs) were calculated from the action spectra. In a somewhat simplified way, RAF can be defined as the percent increase of radiation damage for a 1% depletion of the ozone layer. Central European summer conditions were used in the calculations, but it has been shown that RAF values are not critically dependent on latitude or season. If only the ultraviolet spectral region is considered, the RAF values obtained are 0.7 for the green alga Prasiola stipitata, 0.4 for the dinoflagellate Gyrodinium dorsum, and 1.0 for the cyanobacterium Anabaena sp. In the case of P. stipitata, however, the effect of visible light (PAR, photosynthetically active radiation, 400-700 nm) is sufficient to lower the RAF to about 0.4, while the PAR effect for G. dorsum is negligible. RAFs for some damage processes, such as for DNA damage (RAF=2.1 if protective effects or photorepair are not considered [1]), are higher than those above. Our interpretation of this is that if the ozone layer is depleted, increased damaging radiation could overrule increased synthesis of protective pigments. In addition to investigating the functional effectiveness of the different screening compounds, direct UV effects on a number of key processes were also studied in order to gain further insight into the ability of the organisms to withstand enhanced UV-B radiation. To this end, the temperature-dependent repair of cyclobutane dimers (CPD) and (6-4) photoproducts induced by enhanced UV-B was studied in Nicotiana tabacum, and the UV-B induction of CPD was studied in the lichen Cladonia arbuscula. Also, photosynthesis and motility were monitored and the response related to the potential function of the screening compounds of the specific organism.  相似文献   

15.
Abstract The hairless mouse has been used as an experimental model for photocarcinogenesis for about 20 years. Although the carcinogenesis action spectra for mice and man are not known, acute responses to ultraviolet radiation (UVR) in the biologically active UVB and UVC region (wavelengths below 320 nm) can be compared. Vascular response (predominantly edema) action spectra for monochromatic radiation in the Skh:HR-l (albino hairless) male mouse were determined. These action spectra were found to be very similar to the human erythema action spectrum that had been developed using the same monochromator. The accuracy of this experimentally derived action spectrum was tested with a series of polychromatic source spectra. The mice were exposed to radiation from a long arc Xe lamp filtered by varying thicknesses of Schott WG320 filters, which yielded a wide range of biologically effective spectra. Spectral irradiance measurements, when weighted with the mouse edema and human erythema action spectra and multiplied by the irradiation time required to elicit a threshold response (edema), yielded a constant weighted dose regardless of irradiation spectral quality. The integrated effective dose was approximately 200 J/m2 of 297 nm equivalent energy, agreeing with requirements for the monochromatic 297 nm dose in the mice as well as for minimal human erythema. These data suggest a commonality in the UVR chromophores of mice and men as they relate to the acute responses described, and a direct additivity of effectiveness from the UVR components in a polychromatic beam, at least over the portion of the UVR spectrum tested (λ > 295 nm).  相似文献   

16.
Abstract An action spectrum was obtained for photoreactivation (PR) of morphological abnormality arising from ultraviolet (UV)-irradiation of sea urchin sperm. The wavelength dependence of PR was measured by the restoration of the formation of normal pluteus larvae after the exposure of fertilized eggs to various fluences of monochromatic PR light (313 to 500 nm). The PR action spectrum showed a maximum around 365 nm and a secondary peak somewhere above 400 nm. High PR activity beyond 400 nm wavelengths may reflect an advantageous or adaptational ability to cope with harmful effects of solar UV radiation.  相似文献   

17.
ULTRAVIOLET RADIATION IN ANTARCTICA: INHIBITION OF PRIMARY PRODUCTION   总被引:3,自引:0,他引:3  
With the seasonal formation of the ozone hole over Antarctica, there is much concern regarding the effects of increased solar UV-B radiation (280–320 nm) on the marine ecosystem in the Southern Ocean. In situ incubations of natural phytoplankton assemblages in antarctic waters indicate that under normal ozone conditions UV-B radiation is responsible for a loss of approximately 4.9% of primary production in the euphotic zone, whereas UV radiation with wavelengths between 320 and 360 nm causes a loss of approximately 6.2%. When combined with data on the action spectrum for photoinhibition by UV radiation, our data suggest that the enhanced fluence of UV-B radiation under a well-developed ozone hole (150 Dobson units) would decrease daily primary productivity by an additional amount of 3.8%. Calculations that take into consideration the extent and duration of low stratospheric ozone concentrations during September to November indicate that the decrease in total annual primary production in antarctic waters due to enhanced UV-B radiation would be 0.20%.  相似文献   

18.
A substantial number of studies have been conducted over the last several decades to assess the potential impacts of long-term increases in ultraviolet-B radiation (UV-B between 280 and 320 nm) that will result from continued depletion of stratospheric ozone. However, seasonal changes, tropospheric chemistry and cloudiness are the dominant factors controlling ambient UV-B levels on a short-term or daily basis. The effects of short-term changes in UV-B on plant growth, phytochemistry and physiological processes have received relatively little attention. The USDA UV-B Monitoring and Research Program provides an excellent network of stations that provide an opportunity to monitor long-term changes in solar UV-B radiation and evaluate the responses of plants to short-term variation in UV-B levels on a near-real-time basis. In this study barley (Hordeum vulgare L.) and soybean (Glycine max [L] Merr.) were used as model systems. Emerging seedlings of these species were grown under either near-ambient levels of UV-B or under reduced levels (ca 90% reduction) in the field. Periodic measurements of foliar UV-screening compounds were made on separate groups of seedlings planted at intervals over the growing season during contrasting periods of ambient levels of UV radiation. The levels of UV-screening compounds correlated with UV-B levels in both species and with UV-A in soybean but the sensitivity of the response differed between the two species and among the soybean cultivars. Response differences among species may be related to unique secondary chemistry of each species, so one response estimate or action spectrum may not be appropriate for all species.  相似文献   

19.
Ultraviolet-B (UV-B,280–320 nm) irradiance was calculated for more than 1200 sites in Asia to characterize the spatial and temporal variation in the present UV-B climate for rice-growing regions. The analytical model of Green et al. (Photochem. Photobiol. 31 ,59–65, 1980) was used to compute UV-B irradiance for clear skies using satellite-observed ozone column thickness and local elevation data. Ground-based observations of cloud cover were then used to approximate the average effect of cloud cover on UV-B irradiance using the approach of Johnson et al. (Photochem. Photobiol. 23 ,179–188, 1976). Over the geographic range of rice cultivation, the maximum daily effective UV-B irradiance (UV-BBE), when weighted according to a general plant action spectrum, was found to vary approx. 2.5-fold under both clear and cloudy sky conditions. Under clear skies, the timing of maximum solar UV-BBE changed with latitude and varied from February-March near the equator to July-August at temperate locations. Cloud cover was found to alter the season of maximum UV-BBE in many tropical regions, due to the pronounced monsoonal climate, but had little effect on UV-B seasonality at higher latitudes. Under a climate resulting from a doubling of atmospheric carbon dioxide, estimated UV-B using predicted cloud cover was found to change by up to 17% from present conditions in Thailand. Both latitudinal and seasonal variation in solar UV-B radiation may be important aspects of the UV-B climate for rice as cultivars differ in sensitivity to UV-B and are grown under diverse conditions and locations.  相似文献   

20.
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号