首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyunsaturated lipids in cellular membranes are known to play key roles in such diverse biological processes as vision, neuronal signaling, and apoptosis. One hypothesis is that polyunsaturated lipids are involved in second messenger functions in biological signaling. Another current hypothesis affirms that the functional role of polyunsaturated lipids relies on their ability to modulate physical properties of the lipid bilayer. The present research has employed solid-state 2H NMR spectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position. Measurements have been performed on fluid (L(alpha))-state multilamellar dispersions as a function of temperature for saturated acyl chain lengths of n = 12, 14, 16, and 18 carbons. The saturated sn-1 chains are therefore used as an intrinsic probe with site-specific resolution of the polyunsaturated bilayer structure. The 2H NMR order parameters as a function of acyl position (order profiles) have been analyzed using a mean-torque potential model for the chain segments, and the results are discussed in comparison with the homologous series of disaturated lipid bilayers. At a given absolute temperature, as the sn-1 acyl length adjacent to the sn-2 DHA chain is greater, the order of the initial chain segments increases, whereas that of the end segments decreases, in marked contrast with the corresponding disaturated series. For the latter, the order of the end segments is practically constant with acyl length, thus revealing a universal chain packing profile. We find that the DHA-containing series, while more complex, is still characterized by a universal chain packing profile, which is shifted relative to the homologous saturated series. Moreover, we show how introduction of DHA chains translates the order profile along the saturated chains, making more disordered states accessible within the bilayer central region. As a result, the area per lipid headgroup is increased as compared to disaturated bilayers. The systematic analysis of the 2H NMR data provides a basis for studies of lipid interactions with integral membrane proteins, for instance in relation to characteristic biological functions of highly unsaturated lipid membranes.  相似文献   

2.
Unequal affinity between lipids has been hypothesized to be a mechanism for the formation of microdomains/rafts in membranes. Our studies focus upon the interaction of cholesterol with polyunsaturated fatty acid (PUFA)-containing phospholipids. They support the proposal that steric incompatibility of the rigid steroid moiety for highly disordered PUFA chains, in particular docosahexaenoic acid (DHA), provides a sensitive trigger for lateral segregation of lipids into PUFA-rich/sterol-poor and PUFA-poor/sterol-rich regions. Solid state 2H NMR and x-ray diffraction (XRD) demonstrate that the solubility of cholesterol is reduced in 1-palmitoyl-2-docosahexaenoyl-phosphatidylethanolamine (16-0:22:6PE) bilayers. In mixed membranes of phosphatidylethanolamine (PE) with the lipid raft forming molecules egg sphingomyelin (SM) and cholesterol, diminished affinity of the sterol for 16:0-22:6PE relative to 1-palmitoyl-2-oleoylphosphatidylethanolamine (16:0-18:1PE) is identified by 2H NMR order parameters and detergent extraction. Phase separation of the PUFA-containing phospholipid from SM/cholesterol rafts is the implication, which may be associated with the myriad of health benefits of dietary DHA.  相似文献   

3.
Polyunsaturated phospholipids of the omega-3 and omega-6 classes play key roles in cellular functions, yet their mechanisms of biological action are still a matter of debate. Using deuterium ((2)H) NMR spectroscopy and small-angle X-ray diffraction, we show how membrane properties are modified by docosahexaenoic (DHA; 22:6) and arachidonic (AA; 20:4) acyl chains of the omega-3 and the omega-6 families, respectively. Structural and dynamical differences due to polyunsaturation are evident in both the ordered and disordered phases of mixed-chain (16:0)(22:6)PC and (16:0)(20:4)PC bilayers. Due to the lower chain melting temperature, the omega-6 AA bilayer is more disordered in the fluid (L(alpha)) state than the omega-3 DHA bilayer; it is thinner with a larger area per lipid. The thermal hysteresis observed for the DHA bilayer may represent the influences of angle-iron conformers in the gel state and back-bended, hairpinlike conformers in the fluid state, consistent with molecular dynamics studies. Interpretation of the (2)H NMR order profiles of (16:0-d(31))(22:6)PC and (16:0-d(31))(20:4)PC together with X-ray electron density profiles reveals an uneven distribution of mass; i.e., the sn-1 saturated chain is displaced toward the membrane center, whereas the sn-2 polyunsaturated chain is shifted toward the bilayer aqueous interface. Moreover, the (2)H NMR relaxation rates are increased by the presence of omega-6 AA chains compared to omega-3 DHA chains. When evaluated at the same amplitude of motion, relaxation parameters give a naturally calibrated scale for comparison of fluid lipid bilayers. Within this framework, polyunsaturated bilayers are relatively soft to bending and area fluctuations on the mesoscale approaching molecular dimensions. Significant differences are evident in the viscoelastic properties of the omega-3 and omega-6 bilayers, a possibly biologically relevant feature that distinguishes between the two phospholipid classes.  相似文献   

4.
Insufficient supply to the developing brain of docosahexaenoic acid (22:6n3, DHA), or its omega-3 fatty acid precursors, results in replacement of DHA with docosapentaenoic acid (22:5n6, DPA), an omega-6 fatty acid that is lacking a double bond near the chain's methyl end. We investigated membranes of 1-stearoyl(d(35))-2-docosahexaenoyl-sn-glycero-3-phosphocholine and 1-stearoyl(d(35))-2-docosapentaenoyl-sn-glycero-3-phosphocholine by solid-state NMR, X-ray diffraction, and molecular dynamics simulations to determine if the loss of this double bond alters membrane physical properties. The low order parameters of polyunsaturated chains and the NMR relaxation data indicate that both DHA and DPA undergo rapid conformational transitions with correlation times of the order of nanoseconds at carbon atom C(2) and of picoseconds near the terminal methyl group. However, there are important differences between DHA- and DPA-containing lipids: the DHA chain with one additional double bond is more flexible at the methyl end and isomerizes with shorter correlation times. Furthermore, the stearic acid paired with the DHA in mixed-chain lipids has lower order, in particular in the middle of the chain near carbons C(10)(-)(12), indicating differences in the packing of hydrocarbon chains. Such differences are also reflected in the electron density profiles of the bilayers and in the simulation results. The DHA chain has a higher density near the lipid-water interface, whereas the density of the stearic acid chain is higher in the bilayer center. The loss of a single double bond from DHA to DPA results in a more even distribution of chain densities along the bilayer normal. We propose that the function of integral membrane proteins such as rhodopsin is sensitive to such a redistribution.  相似文献   

5.
The role of electrostatic forces in indole-lipid interactions was studied by (1)H and (2)H NMR in ether- and ester-linked phospholipid bilayers with incorporated indole. Indole-ring-current-induced (1)H NMR chemical shifts of lipid resonances in bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-di-O-octadecenyl-sn-glycero-3-phosphocholine, and 1,2-di-O-octadecenyl-sn-glycero-3-phosphomethanol show a bimodal indole distribution, with indole residing at the upper hydrocarbon chain/glycerol region of the lipid and near the choline group, when present. (2)H NMR of indole-d(7)-incorporated lipid bilayers reveals that the former site is occupied by about two-thirds of the indole, which adopts a distinct preferred orientation with respect to the bilayer normal. The results suggest that the upper hydrocarbon chain/glycerol location is dictated by many factors, including interactions with the electric charges and dipoles, van der Waals interactions, entropic contributions, and hydrogen bonding. Indole diffusion rates are higher in lipids with ester bonds and lower in choline-containing lipids, suggesting that interactions between indole and carbonyl groups are of minor importance for lipid-indole association and that cation-pi interactions with choline drive the second indole location. Nuclear Overhauser effect spectroscopy cross-relaxation rates suggest a 30-ns lifetime for indole-lipid associations. These results may have important implications for sidedness and structural transitions in tryptophan-rich membrane proteins.  相似文献   

6.
Photopolymerizable phospholipid DC(8,9)PC (1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) exhibits unique assembly characteristics in the lipid bilayer. Because of the presence of the diacetylene groups, DC(8,9)PC undergoes polymerization upon UV (254 nm) exposure and assumes chromogenic properties. DC(8,9)PC photopolymerization in gel-phase matrix lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monitored by UV-vis absorption spectroscopy occurred within 2 min after UV treatment, whereas no spectral shifts were observed when DC(8,9)PC was incorporated into liquid-phase matrix 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Liquid chromatography-tandem mass spectrometry analysis showed a decrease in the amount of DC(8,9)PC monomer in both DPPC and POPC environments without any change in the matrix lipids in UV-treated samples. Molecular dynamics (MD) simulations of DPPC/DC(8,9)PC and POPC/DC(8,9)PC bilayers indicate that the DC(8,9)PC molecules adjust to the thickness of the matrix lipid bilayer. Furthermore, the motions of DC(8,9)PC in the gel-phase bilayer are more restricted than in the fluid bilayer. The restricted motional flexibility of DC(8,9)PC (in the gel phase) enables the reactive diacetylenes in individual molecules to align and undergo polymerization, whereas the unrestricted motions in the fluid bilayer restrict polymerization because of the lack of appropriate alignment of the DC(8,9)PC fatty acyl chains. Fluorescence microscopy data indicates the homogeneous distribution of lipid probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (N-Rh-PE) in POPC/DC(8,9)PC monolayers but domain formation in DPPC/DC(8,9)PC monolayers. These results show that the DC(8,9)PC molecules cluster and assume the preferred conformation in the gel-phase matrix for the UV-triggered polymerization reaction.  相似文献   

7.
In deuterium ((2)H) NMR spectroscopy of fluid lipid bilayers, the average structure is manifested in the segmental order parameters (S(CD)) of the flexible molecules. The corresponding spin-lattice relaxation rates (R(1Z) depend on both the amplitudes and the rates of the segmental fluctuations, and indicate the types of lipid motions. By combining (2)H NMR order parameter measurements with relaxation studies, we have obtained a more comprehensive picture of lipids in the liquid-crystalline (L(alpha)) state than formerly possible. Our data suggest that a lipid bilayer constitutes an ordered fluid, in which the phospholipids are grafted to the aqueous interface via their polar headgroups, whereas the fatty acyl chains are in effect liquid hydrocarbon. Studies of (2)H-labeled saturated lipids indicate their R(1Z) rates and S(CD) order parameters are correlated by a model-free, square-law functional dependence, signifying the presence of relatively slow bilayer fluctuations. A new composite membrane deformation model explains simultaneously the frequency (magnetic field) dependence and the angular anisotropy of the relaxation. The results imply the R(1Z) rates are due to a broad spectrum of 3-D collective bilayer excitations, together with effective axial rotations of the lipids. For the first time, NMR relaxation studies show that the viscoelastic properties of membrane lipids at megahertz frequencies are modulated by the lipid acyl length (bilayer thickness), polar headgroups (bilayer interfacial area), inclusion of a nonionic detergent (C(12)E(8)), and the presence of cholesterol, leading to a range of bilayer softness. Our findings imply the concept of elastic deformation is relevant on lengths approaching the bilayer thickness and less (the mesoscopic scale), and suggest that application of combined R(1Z) and S(CD) studies of phospholipids can be used as a simple membrane elastometer. Heuristic estimates of the bilayer bending rigidity kappa and the area elastic modulus K(a) enable comparison to other biophysical studies, involving macroscopic deformation of thin membrane lipid films. Finally, the bilayer softness may be correlated with the lipid diversity of biomembranes, for example, with regard to membrane curvature, repulsive interactions between bilayers, and lipid-protein interactions.  相似文献   

8.
Nearest-neighbor recognition experiments, which have been carried out using exchangeable dimers derived from 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine,and 1-palmitoyl-2-oleoyl-sn-glycerophosphoethanolamine, indicate that replacement of H2O by D2O can significantly influence phospholipid mixing, but only in bilayers that are saturated and devoid of cholesterol. These findings, together with those of previous electron spin resonance spin-labeling studies,indicate that mammalian membranes, which are rich in cholesterol and unsaturated phospholipids, are ideal hydrophobic barriers.  相似文献   

9.
We investigate the effect of specific conformations of double-bond segments in highly polyunsaturated acyl chains on the deuterium (2)H NMR order parameters of a fully hydrated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer. The system is analyzed by performing a molecular dynamics simulation study at ambient conditions in the fluid lamellar phase. By separately calculating the different partial contributions to the total order parameter profiles measurable experimentally, we are able to get insights into the molecular origin of earlier experimental and theoretical observations. The effect of the position of the different conformations of double-bond segments along the polyunsaturated acyl chain is also examined. As in experiments performed in a series of lipid bilayers with an increasing number of cis double bonds per lipid molecule [Holte, L. L., et al. Biophys. J. 1995, 68, 2396], we find that unsaturations influence mainly the order of the bottom half of the saturated chain. Specific conformations of the polyunsaturated chain close to the lipid headgroups have a distinct effect on the order of the bottom half of the saturated chain and on the top half of the polyunsaturated chain. Our results indicate that for SDPC the conformation of the region of the polyunsaturated chain located between the first three cis double bonds is responsible for the major effects on the orientational order of both the saturated and the polyunsaturated chains.  相似文献   

10.
We investigated the mobility and phase-partitioning of the fluorescent oxidized phospholipid analogue 1-palmitoyl-2-glutaroyl-sn-glycero-3-phospho-N-Alexa647-ethanolamine (PGPE-Alexa647) in supported lipid bilayers. Compared to the conventional phospholipid dihexadecanoylphosphoethanolamine (DHPE)-Bodipy we found consistently higher diffusion constants. The effect became dramatic when immobile obstacles were inserted into the bilayer, which essentially blocked the diffusion of DHPE-Bodipy but hardly influenced the movements of PGPE-Alexa647. In a supported lipid bilayer made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the differences in probe mobility leveled off with increasing cholesterol content. Using coarse-grained molecular dynamics simulations, we could ascribe this effect to increased interactions between the oxidized phospholipid and the membrane matrix, concomitant with a translation in the headgroup position of the oxidized phospholipid: at zero cholesterol content, its headgroup is shifted to the outside of the DOPC headgroup region, whereas increasing cholesterol concentrations pulls the headgroup into the bilayer plane.  相似文献   

11.
Anionic unsaturated lipid bilayers represent suitable model systems that mimic real cell membranes: they are fluid and possess a negative surface charge. Understanding of detailed molecular organization of water-lipid interfaces in such systems may provide an important insight into the mechanisms of proteins' binding to membranes. Molecular dynamics (MD) of full-atom hydrated lipid bilayers is one of the most powerful tools to address this problem in silico. Unfortunately, wide application of computational methods for such systems is limited by serious technical problems. They are mainly related to correct treatment of long-range electrostatic effects. In this study a physically reliable model of an anionic unsaturated bilayer of 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) was elaborated and subjected to long-term MD simulations. Electrostatic interactions were treated with two different algorithms: spherical cutoff function and particle-mesh Ewald summation (PME). To understand the role of lipid charge in the system behavior, similar calculations were also carried out for zwitterionic bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). It was shown that, for the charged DOPS bilayer, the PME protocol performs much better than the cutoff scheme. In the last case a number of artifacts in the structural organization of the bilayer were observed. All of them were attributed to inadequate treatment of electrostatic interactions of lipid headgroups with counterions. Electrostatic properties, along with structural and dynamic parameters, of both lipid bilayers were investigated. Comparative analysis of the MD data reveals that the water-lipid interface of the DOPC bilayer is looser than that for DOPS. This makes possible deeper penetration of water molecules inside the zwitterionic (DOPC) bilayer, where they strongly interact with carbonyls of lipids. This can lead to thickening of the membrane interface in zwitterionic as compared to negatively charged bilayers.  相似文献   

12.
We performed six molecular dynamics simulations: three on hydrated bilayers containing pure phospholipids and three on hydrated bilayers containing mixtures of these phospholipids with cholesterol. The phospholipids in our simulations were SSM (sphingomyelin containing a saturated 18:0 acyl chain), OSM (sphingomyelin with an unsaturated 18:1 acyl chain), and POPC (palmitoyloleoylphosphatidylcholine containing one saturated and one unsaturated chain). Data from our simulations were used to study systematically the effect of cholesterol on phospholipids that differed in their headgroup and tail composition. In addition to the structural analysis, we performed an energetic analysis and observed that energies of interaction between cholesterol and neighboring SM molecules are similar to the energies of interaction between cholesterol and POPC. We also observed that the interaction energy between cholesterol and neighboring lipids cannot be used for the determination of which lipids are involved in the creation of a complex.  相似文献   

13.
In order to investigate experimentally inaccessible, molecular-level detail regarding interleaflet interaction in membranes, we have run an extensive series of coarse-grained molecular dynamics simulations of phase separated lipid bilayers. The simulations are motivated by differences in lipid and cholesterol composition in the inner and outer leaflets of biological membranes. Over the past several years, this phenomenon has inspired a series of experiments in model membrane systems which have explored the effects of lipid compositional asymmetry in the two leaflets. The simulations are directed at understanding one potential consequence of compositional asymmetry, that being regions of bilayers where liquid-ordered (L(o)) domains in one leaflet are opposite liquid-disordered (L(d)) domains in the other leaflet (phase asymmetry). The simulated bilayers are of two sorts: 1) Compositionally symmetric leaflets where each of the two leaflets contains an identical, phase separated (L(o)/L(d)) mixture of cholesterol, saturated and unsaturated phospholipid; and 2) Compositionally asymmetric leaflets, where one leaflet contains a phase separated (L(o)/L(d)) mixture while the other contains only unsaturated lipid, which on its own would be in the L(d) phase. In addition, we have run simulations where the lengths of the saturated lipid chains as well as the mole ratios of the three lipid components are varied. Collectively, we report on three types of interleaflet coupling within a bilayer. First, we show the effects of compositional asymmetry on acyl chain tilt and order, lipid rotational dynamics, and lateral diffusion in regions of leaflets that are opposite L(o) domains. Second, we show substantial effects of compositional asymmetry on local bilayer curvature, with the conclusion that phase separated leaflets resist curvature, while inducing large degrees of curvature in an opposing L(d) leaflet. Finally, in compositionally symmetric, phase separated bilayers, we find phase asymmetry (domain antiregistration) between the two leaflets occurs as a consequence of mismatched acyl chain-lengths in the saturated and unsaturated lipids.  相似文献   

14.
The binding of peripheral proteins to membranes results in different biological effects. The large diversity of membrane lipids is thought to modulate the activity of these proteins. However, information on the selective binding of peripheral proteins to membrane lipids is still largely lacking. Lipid monolayers at the air/water interface are useful model membrane systems for studying the parameters responsible for peripheral protein membrane binding. We have thus measured the maximum insertion pressure (MIP) of two proteins from the photoreceptors, Retinitis pigmentosa 2 (RP2) and recoverin, to estimate their binding to lipid monolayers. Photoreceptor membranes have the unique characteristic that more than 60% of their fatty acids are polyunsaturated, making them the most unsaturated natural membranes known to date. These membranes are also thought to contain significant amounts of saturated phospholipids. MIPs of RP2 and recoverin have thus been measured in the presence of saturated and polyunsaturated phospholipids. MIPs higher than the estimated lateral pressure of biomembranes have been obtained only with a saturated phospholipid for RP2 and with a polyunsaturated phospholipid for recoverin. A new approach was then devised to analyze these data properly. In particular, a parameter called the synergy factor allowed us to highlight the specificity of RP2 for saturated phospholipids and recoverin for polyunsaturated phospholipids as well as to demonstrate clearly the preference of RP2 for saturated phospholipids that are known to be located in microdomains.  相似文献   

15.
Polyunsaturated lipids are an essential component of biological membranes, influencing order and dynamics of lipids, protein-lipid interaction, and membrane transport properties. To gain an atomic level picture of the impact of polyunsaturation on membrane properties, quantum mechanical (QM) and empirical force field based calculations have been undertaken. The QM calculations of the torsional energy surface for rotation about vinyl-methylene bonds reveal low barriers to rotation, indicating an intrinsic propensity toward flexibility. Based on QM and experimental data, empirical force field parameters were developed for polyunsaturated lipids and applied in a 16 ns molecular dynamics (MD) simulation of a 1-stearoyl-2-docosahexaenoyl-sn-glyerco-3-phosphocholine (SDPC) lipid bilayer. The simulation results are in good agreement with experimental data, suggesting an unusually high degree of conformational flexibility of polyunsaturated hydrocarbon chains in membranes. The detailed analysis of chain conformation and dynamics by simulations is aiding the interpretation of experimental data and is useful for understanding the unique role of polyunsaturated lipids in biological membranes. The complete force field is included as Supporting Information and is available from http://www.pharmacy.umaryland.edu/faculty/amackere/research.html.  相似文献   

16.
We report the utilization of magnetically aligned phospholipid bilayers (bicelles) to study the effects of cholesterol in phospholipid bilayers for both chain perdeuterated DMPC and partially deuterated alpha-[2,2,3,4,4,6-d(6)]-cholesterol using (2)H solid-state NMR spectroscopy. The quadrupolar splittings at 40 degrees C were 25.5 and 37.7 kHz, respectively, for the 2,4-(2)H(eq) and 2,4-(2)H(ax) deuterons when the bilayer normal of the discs was aligned perpendicular to the static magnetic field. The quadrupolar splittings were doubled when Yb(3+) ions were added to flip the bicelles 90 degrees such that the bilayer normal was colinear with the magnetic field. The results suggest that cholesterol is incorporated into the bicelle discs. For chain perdeuterated DMPC-d(54), incorporated into DMPC-DHPC bicelle discs, the individual quadrupolar splittings of the methylene and methyl groups doubled on going from the perpendicular to the parallel alignment. Also, the presence of cholesterol increased the overall ordering of the acyl chains of the phospholipids. S(CD) (i) calculations were extracted directly from the (2)H quadrupolar splittings of the chain perdeuterated DMPC. The order parameter, S(CD) (i), calculations clearly indicated an overall degree of ordering of the acyl chains in the presence of cholesterol. We also noted a disordering effect at higher temperatures. This study demonstrates the ease with which (2)H order parameters can be calculated utilizing magnetically aligned phospholipid bilayers when compared with randomly dispersed membrane samples.  相似文献   

17.
The conformational dynamics of the oxidatively modified phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) were assessed by observing by fluorescence energy transfer the association of the water-soluble cationic protein cytochrome c with micelles composed of this lipid. In keeping with reversal of the azelaoyl chain so as to expose its carboxyl function on the micelle surface, cytochrome c bound avidly to the micelles. In contrast, the aldehyde group bearing 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) interacted only weakly. While the physiological significance of the above interaction is uncertain, our results demonstrate that oxidative damage alters the physical properties of lipid bilayers, involving enrichment of the polar moieties of oxidatively modified lipid chains within the membrane surface.  相似文献   

18.
Atomic force microscopy (AFM) was used to study the influence of a membrane protein, lactose permease of Escherichia coli (LacY), on the surface spreading behavior and the features of self-assembled phospholipids bilayers on mica. The miscibility of phospholipids used, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), was investigated by surface pressure area isotherm measurements at the air-water interface. A composition with an equimolar proportion of POPC and DMPC was used to form the liposomes. Surface layers formed with DMPC:POPC (0.5:0.5, mol/mol) or LacY reconstituted in proteoliposomes with the same phospholipid composition were imaged by using AFM. When lactose permease was reconstituted in DMPC:POPC (0.5:0.5, mol/mol), self-assembled structures that remained firmly adsorbed onto the mica surface were observed. These sheets had an irregular shape and their upper layer was more corrugated than that obtained for the phospholipid matrix.  相似文献   

19.
In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.  相似文献   

20.
We have developed a solid-state NMR method for observing the signals due to 13C spins of a peptide in the close vicinity of 31P and 2H spins in deuterated phospholipid bilayers. The signal intensities in 13C high-resolution NMR spectra directly indicate the depolarization of 1H by 1H-31P and 1H-2H dipolar couplings under multiple-contact cross-polarization. This method was applied to a fully 13C-, 15N-labeled 14-residue peptide, mastoparan-X (MP-X), bound to phospholipid bilayers whose fatty acyl chains are deuterated. The 13C NMR spectra for the depolarization were simulated from the chemical shifts and structure of membrane-bound MP-X previously determined and the distribution of 2H and 31P spins in lipid bilayers. The minimization of RMSD between the simulated and the experimental spectra showed that the amphiphilic alpha-helix of MP-X was located in the interface between the water layer and the hydrophobic domain of the bilayer, with nonpolar residues facing the phosphorus atoms and alkyl chains of the lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号