首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pressure-dependence of the viscosity becomes important in flows where high pressures are encountered. Applications include many polymer processing applications, microfluidics, fluid film lubrication, as well as simulations of geophysical flows. Under the assumption of unidirectional flow, we derive analytical solutions for plane, round, and annular Poiseuille flow of a Newtonian liquid, the viscosity of which increases linearly with pressure. These flows may serve as prototypes in applications involving tubes with small radius-to-length ratios. It is demonstrated that, the velocity tends from a parabolic to a triangular profile as the viscosity coefficient is increased. The pressure gradient near the exit is the same as that of the classical fully developed flow. This increases exponentially upstream and thus the pressure required to drive the flow increases dramatically.  相似文献   

2.
3.
We consider both the planar and axisymmetric steady, laminar Poiseuille flows of a weakly compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s slip equation and that the density obeys a linear equation of state. A perturbation analysis is performed in terms of the primary flow variables using the dimensionless isothermal compressibility as the perturbation parameter. Solutions up to the second order are derived and compared with available analytical results. The combined effects of slip, compressibility, and inertia are discussed with emphasis on the required pressure drop and the average Darcy friction factor.  相似文献   

4.
We solve analytically the cessation flows of a Newtonian fluid in circular and plane Couette geometries assuming that wall slip occurs provided that the wall shear stress exceeds a critical threshold, the slip yield stress. In steady-state, slip occurs only beyond a critical value of the angular velocity of the rotating inner cylinder in circular Couette flow or of the speed of the moving upper plate in plane Couette flow. Hence, in cessation, the classical no-slip solution holds if the corresponding wall speed is below the critical value. Otherwise, slip occurs only initially along both walls. Beyond a first critical time, slip along the fixed wall ceases, and beyond a second critical time slip ceases also along the initially moving wall. Beyond this second critical time no slip is observed and the decay of the velocity is faster. The velocity decays exponentially in all regimes and the decay is reduced with slip. The effects of slip and the slip yield stress are discussed.  相似文献   

5.
6.
An incompressible smoothed particle hydrodynamics (ISPH) method is developed for the modeling of multiphase Newtonian and inelastic non-Newtonian flows at low density ratios. This new method is the multiphase extension of Xenakis et al, J. Non-Newtonian Fluid Mech., 218, 1-15, which has been shown to be stable and accurate, with a virtually noise-free pressure field for single-phase non-Newtonian flows. For the validation of the method a semi-analytical solution of a two-phase Newtonian/non-Newtonian (inelastic) Poiseuille flow is derived. The developed method is also compared with the benchmark multiphase case of the Rayleigh Taylor instability and a submarine landslide, thereby demonstrating capability in both Newtonian/Newtonian and Newtonian/non-Newtonian two-phase applications. Comparisons with analytical solutions, experimental and previously published results are conducted and show that the proposed methodology can accurately predict the free-surface and interface profiles of complex incompressible multi-phase flows at low-density ratios relevant, for example, to geophysical environmental applications.  相似文献   

7.
This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed.  相似文献   

8.
We present results of a computational study of visco-plastically lubricated plane channel multi-layer flows, in which the yield stress fluid layers are unyielded at the interface. We demonstrate that symmetric 3-layer flows may be established for wide ranges of viscosity ratio (m), Bingham number (B) and interface position (yi), for Reynolds numbers Re  100. Here an inner Newtonian layer is sandwiched between 2 layers of Bingham fluid. Results are presented illustrating the variation of development length with the main dimensionless parameters and for different inlet sizes. We also show that these flows may be initiated by injecting either fluid into a steady flow of the other fluid. The flows are established quicker when the core fluid is injected into a channel already full of the outer fluid. In situations where the inner fluid flow rate is dominant we observed inertial symmetry breaking in the symmetric start-up flows as Re was increased. Asymmetry is also observed in studying temporal nonlinear stability of these flows, which appear stable up to moderate Re and significant amplitudes. In general the flows destabilize at lower Re and perturbation amplitudes than do the analogous core-annular pipe flows, but 1–1 comparison is hard. When the flow is stable the decay characteristics are very similar to those of the pipe flows. In the final part of the paper we explore more exotic flow effects. We show how flow control could be used to position layers asymmetrically within the flow, and how this effect might be varied transiently. We demonstrate that more complex layered flows can be stably achieved, e.g. a 7-layered flow is established. We also show how a varying inlet position can be used to “write” in the yield stress fluid: complex structures that are advected with the flow and encapsulated within the unyielded fluid.  相似文献   

9.
Numerical simulations of viscoplastic fluid flows have provided a better understanding of fundamental properties of yield stress fluids in many applications relevant to natural and engineering sciences. In the first part of this paper, we review the classical numerical methods for the solution of the non-smooth viscoplastic mathematical models, highlight their advantages and drawbacks, and discuss more recent numerical methods that show promises for fast algorithms and accurate solutions. In the second part, we present and analyze a variety of applications and extensions involving viscoplastic flow simulations: yield slip at the wall, heat transfer, thixotropy, granular materials, and combining elasticity, with multiple phases and shallow flow approximations. We illustrate from a physical viewpoint how fascinating the corresponding rich phenomena pointed out by these simulations are.  相似文献   

10.
We consider the use of accelerated gradient-type iterative methods for solution of Newtonian and certain non-Newtonian (power-law and Bingham models) viscous flow problems. The formulations are based on penalty and mixed finite element methods, and such factors as the effect of the penalty parameter, asymmetry, continuation and preconditioning are examined.  相似文献   

11.
The dynamics of a single Newtonian drop immersed in a Newtonian matrix subjected to large-amplitude oscillatory shear flow is investigated. The ratio of the drop and matrix viscosity is above criticality, and thus break-up is absent under constant shear flow. At small forcing amplitudes the drop shape follows a regular oscillation. As the forcing amplitude increases, multipeaked oscillations of drop shape and orientation are observed. Experimental results are compared with predictions obtained with a phenomenological model. Model predictions are in qualitative good agreement with experimental data. The model suggests that the appearance of higher harmonics in the drop response is mainly due to flow nonaffinity.  相似文献   

12.
Upward, co-current bubbly flows in a vertical rectangular duct are investigated at low liquid Reynolds numbers. The conditions considered are such that the pseudo-turbulent stresses remain negligible compared to the viscous stresses. The void fraction transverse distribution is idealised as step-functions and is then inserted in the conservation equations supplemented by appropriate closure laws. Analytical expressions are then obtained for the axial velocity profiles, for the lineic gas fraction and for the wall friction. The sensitivity of these quantities to the void distribution, characterised by the void fraction and the width of the three layers introduced, is discussed. It is shown that differential buoyancy effects govern the modification of the liquid velocity profiles. Notably, void peaking near walls is able to induce a wall shear stress many times higher than its single-phase flow counterpart at the same liquid flow rate. Also, the presence of a near wall region free of gas favours the onset of downward directed secondary flows. All these features correspond to experimental observations, and a few quantitative comparisons are also presented which support the validity of the model even in case of void coring. A companion paper (part II) will be devoted to systematic comparisons between predictions and experiments in the case of axisymmetric Poiseuille bubbly flows.  相似文献   

13.
14.
A strain-coupling integral constitutive equation is used to analyze a start-up shear flow experiment. The theory is used to examine the effect of strain-coupling on the strain at the maximum in the shear stress-time curve. The analysis shows that there is a significant dependence of this strain on the shear rate even when a factorable strain-coupling model is used.  相似文献   

15.
A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the RBC rheology in two‐dimensional Poiseuille flows using an immersed boundary method. The lateral migration properties of the cells in Poiseuille flows have been investigated. The simulation results show that the rate of migration toward the center of the channel depends on the swelling ratio and the deformability of the cells. We have also combined the above methodology with a fictitious domain method to study the motion of RBCs in a two‐dimensional micro‐channel with a constriction with an application to blood plasma separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In a companion paper, a simple analytical formulation has been established which provides the wall shear stress in laminar bubbly flows for idealised transverse void fraction distributions. In the present paper, this approach is applied to Poiseuille bubbly flows in circular ducts. New measurements of the void fraction profiles and wall friction angular distribution in a pipe are presented for a wide range of flow parameters. Approximating the void profiles by step-functions allows us to evaluate the wall friction with the above mentioned model. Results are shown to agree satisfactorily with measurements. Notably, negative wall shear stress and wall shear stress much higher than their single-phase flow counterpart at the same liquid flow rate are recovered. Therefore, the principal mechanisms responsible for friction modification are captured with this simple model.  相似文献   

17.
The axisymmetric Poiseuille flow of a purely viscous generalized Newtonian fluid under rate of flow controlled conditions is studied with a change in the boundary conditions at a transition point from an adhesive to a slip condition with friction at the wall. The friction law used originates from an experimental study by (J.M. Piau and N. El Kissi, J. Non-Newtonian Fluid Mech. 54 (1994) 121–142) using a capillary made of steel and a silicone fluid, and is based also on a molecular dynamics theory by (Yu. B. Chernyak, A.I. Leonov, Wear, 108 (1986) 105–138). It gives a non-linear multivalued dependance of the wall shear stress to the velocity at the wall. Moreover, wall shear stress values may become smaller than values obtained when adhesion prevails in the capillary. The shear stress must over-step some limiting stress level to trigger the wall slip. After checking slip boundary condition implementation for the case of Poiseuille flow with slip along the entire wall, the convergence and the validity of the computation was studied. Important morphologic changes of the flow field and the stress field appear around the transition point from adhesion to slip boundary condition. Slip at the wall allows the principal stress difference to be drastically reduced, except in the vicinity of the transition point where this difference is maximum. A peak in shear stress located upstream of the transition, and a peak in elongational stress located downstream of the transition, are observed at the wall. Fully developed near plug-like flows are obtained within about 1D only downstream of the transition point. It is concluded that the effect of slip on extrudates distorsion should appear clearly even when the exit slippery zone is reduced to 1D.  相似文献   

18.
The generalized Newtonian fluid, as an important kind of non-Newtonian fluids, has been widely used in both science and engineering. In this paper, we present a multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid, and validate the model through a detailed comparison with analytical solutions and some published results. The accuracy and stability of the present model are also studied, and compared with those of the popular single-relaxation-time lattice Boltzmann model. Finally, the limit and potential of the multiple-relaxation-time lattice Boltzmann model are briefly discussed.  相似文献   

19.
This paper describes a mathematical model used to simulate the restart of an axial, compressible and transient flow of a Bingham fluid in circular or annular pipes. The model is based on the mass and momentum conservation equations plus a state equation that relates pressure to density. The viscous effect is modeled by employing a friction factor approach. The governing equations are discretized by using the finite volume method with a first-order upwind scheme, and the resulting non-linear algebraic equations are then solved iteratively. The model results were corroborated by an analytical solution for Newtonian flows. Additionally, the results were also in reasonable agreement with results reported in the literature. We also conducted sensitivity analyses with respect to Reynolds number, aspect ratio, gravity and the non-linear advective terms of the governing equations.  相似文献   

20.
An investigation of laminar steady and unsteady flows in a two‐dimensional T‐junction was carried out for Newtonian and a non‐Newtonian fluid analogue to blood. The flow conditions considered are of relevance to hemodynamical applications and the localization of coronary diseases, and the main objective was to quantify the accuracy of the predictions and to provide benchmark data that are missing for this prototypical geometry. Under steady flow, calculations were performed for a wide range of Reynolds numbers and extraction flow rate ratios, and accurate data for the recirculation sizes were obtained and are tabulated. The two recirculation zones increased with Reynolds number, but the behaviour was non‐monotonic with the flow rate ratio. For the pulsating flows a periodic instability was found, which manifests itself by the breakdown of the main vortex into two pieces and the subsequent advection of one of them, while the secondary vortex in the main duct was absent for a sixth of the oscillating period. Shear stress maxima were found on the walls opposite the recirculations, where the main fluid streams impinge onto the walls. For the blood analogue fluid, the recirculations were found to be 10% longer but also short lived than the corresponding Newtonian eddies, and the wall shear stresses are also significantly different especially in the branch duct. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号