首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diammonium hydrogen phosphate, (NH4)2HPO4(DAHP), efficiently catalyzes the one-pot, three-component reaction of an aromatic aldehyde, malononitrile and 4-hydroxycoumarin in aqueous media under mild conditions at room temperature, to afford the corresponding dihydropyrano[c]chromenes in high yields. (S)-Proline has also been used as another neutral catalyst for this reaction at reflux.  相似文献   

2.
The compound (NH4)2[Re2(HPO4)4 · 2H2O] has been synthesized and characterized by electronic and vibrational spectroscopy. The molecular structure has been determined by X-ray diffraction (MoK α radiation, λ = 0.71073 Å). The (NH4)2[Re2(HPO4)4 · 2H2O] coordination units form centrosymmetrical binuclear ordering with each metal atom being coordinated in a distorted octahedron incorporating one rhenium atom, one oxygen atom of the water molecule, and four phosphate oxygen atoms in the equatorial plane. The rhenium-rhenium bond length (2.2207 Å) corresponds to a quadruple bond between the atoms. The [Re2(HPO4)4 · 2H2O]2- complex anions in the crystal are associated through strong hydrogen bonds formed by the phosphate O-H···O groups. The stability of dirhenium(III) tetra-μ-phosphates in aqueous solutions is considered.  相似文献   

3.
Calcium hydroxyapatite/multiwall carbon nanotubes/collagen nanocomposites were synthesized and subjected to physicochemical analysis. The system CaCl2-(NH4)2HPO4-multiwall carbon nanotubes-NH3-H2O-collagen was investigated at 25°C by the solubility method (Tananaev’s residual concentration method) and by pH measurements. Chemical, X-ray powder diffraction, and thermogravimetric analyses and IR spectroscopy showed that, in the system CaCl2-(NH4)2HPO4-multiwall carbon nanotubes-NH3-H2O-collagen under chosen synthesis conditions, nanocomposites comprising nanocrystalline calcium hydroxyapatite (NCHA), multiwall carbon nanotubes (CNT), and collagen form with the composition Ca10(PO4)6(OH)2 · xCNT · yH2O · z collagen, where x = 1–5; y = 5.5–7.7, and z = 3, 5, and 10 wt %. The obtained nanocomposites are the products of the coprecipitation of CNT, collagen, and NCHA, which forms in the system by the interaction of CaCl2 and (NH4)2HPO4.  相似文献   

4.
Technological prerequisites for obtaining special liquid fertilizers with potassium and ammonia hydrophosphates as components were studied. The solubility in the multicomponent (NH4)2HPO4-K2HPO4-NH4NO3-H2O and (NH4)2HPO4-K2HPO4-CO(NH2)2-H2O systems was studied. The chemical composition of the liquid compound fertilizers obtained was determined.  相似文献   

5.
(NH4)Zn2(PO4)(HPO4) was synthesized under mild hydrothermal conditions in the presence of urea. The reaction with n-alkylamines has been investigated by exposing the solid to amines vapor. The new materials were characterized by chemical and thermal analysis, powder X-ray diffraction, and IR spectroscopy. In addition, the simultaneous reaction of this compound with two or more n-alkylamine different molecules was investigated. The reaction of large n-alkylamine molecules was observed to be faster if there is a shorter alkyl chain amine acting as a catalyst, yielding on completion single amine materials. In the case of a vapor mixture of several amines, the compound obtained depends on the reaction time.  相似文献   

6.
Three open-framework iron phosphites: Feп5(NH4)2(HPO3)6 (1), Feп2Fe(NH4)(HPO3)4 (2) and Fe2(HPO3)3 (3) have been synthesized under ionothermal conditions. How the different synthesis parameters, such as the gel concentrations, synthetic times, reaction temperatures and solvents affect the products have been monitored by using high-throughput approaches. Within each type of experiment, relevant products have been investigated. The optimal reaction conditions are obtained from a series of experiments by high-throughput approaches. All the structures are determined by single-crystal X-ray diffraction analysis and further characterized by PXRD, TGA and FTIR analyses. Magnetic study reveals that those three compounds show interesting magnetic behavior at low temperature.  相似文献   

7.
Precise measurements of density and sound velocity at different temperatures ranging from 283.15 to 308.15 K for solutions of PEGDME250, PEGDME500 and PEGDME2000 in water and of PEGDME500 in aqueous solutions of 0.500 mol kg−1 ammonium di-hydrogen phosphate ((NH4)H2PO4) and di-ammonium hydrogen phosphate ((NH4)2HPO4), binodal curves at temperature ranges 293.15-318.15 K for the aqueous PEGDME500 + (NH4)2HPO4, PEGDME500 + (NH4)3PO4, PEGDME2000 + (NH4)H2PO4, PEGDME2000 + (NH4)2HPO4, PEGDME2000 + (NH4)3PO4 and PPG400 + (NH4)2HPO4 two-phase systems, and liquid-liquid equilibrium data at temperature ranges 298.15-318.15 K for the aqueous PEGDME500 + (NH4)2HPO4 and PEGDME2000 + (NH4)2HPO4 two-phase systems have been taken. From the experimental density and sound velocity data, the apparent specific volume, excess specific volume, isentropic compressibility and isentropic compressibility deviation values have been determined and the effect of temperature, charge on the anion of electrolytes and molar mass of PEGDME on the volumetric and compressibility properties of the investigated polymer solutions as well as on the salting-out effect of PEGDMEs produced by ammonium phosphate salts has been studied.  相似文献   

8.
Calcium phosphate powders for manufacturing bioceramics were synthesized via precipitation from stock solutions of (NH4)2HPO4 and Ca(NO3)2, or CaCl2 or Ca(CH3COO)2 with [Ca2+]/[PO43−] = 1, without pH regulation. Properties of powdered samples, including density and microstructure of ceramics sintered at 900, 1000, 1100°C, were studied. The following pairs of precursors such as Ca(NO3)2/(NH4)2HPO4, CaCl2/(NH4)2HPO4, Ca(CH3COO)2/(NH4)2HPO4 gave both insoluble calcium phosphates and the corresponding by-products of synthesis — NH4NO3, NH4Cl, NH4CH3COO. These by-products were released from the calcium phosphate precipitates in the course of heating to the temperature of sintering. Owing to specific buffer properties of the solutions being formed during synthesis, the pH value varied in a wide range during the precipitation process leading to different final values of pH and, thus, to different target phase(s) after annealing at 900–1100°C. After sintering, the samples based on the powders synthesized from Ca(NO3)2/(NH4)2HPO4 consisted of β-Ca2P2O7, whereas the samples based on the powders derived from CaCl2/(NH4)2HPO4 were composed of β-Ca2P2O7 and β-Ca3(PO4)2, and the samples based on the powders synthesized from Ca(CH3COO)2/(NH4)2HPO4 contained only β-Ca3(PO4)2. All the powders can be considered as the precursors for fabrication of bioceramics with enhanced resorption.   相似文献   

9.
KAl(SO4)2·12H2O was found to catalyze efficiently a one-pot three-component cyclocondensation of isatoic anhydride and primary amines or ammonia sources such as (NH4)2CO3, NH4OAc and NH4Cl with aromatic aldehydes under mild conditions to afford the corresponding mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones in good yields.  相似文献   

10.
The effect of impurities on the thermal decomposition kinetics of mineral fertilizers based on (NH4)2HPO4 in self-generated atmosphere was studied by the methods of thermogravimetry and differential thermal analysis. Results are presented of isothermal measurements made in the temperature range 100–110°C. An analysis of the experimental data made it possible to suggest reaction models of the decomposition and to reveal a dependence of the activation energy on the degree of decomposition. A strong deviation of the temperature dependence of rate constants from the Arrhenius law was observed. Conclusions were made on the basis of the study about the influence exerted by impurities on the thermal decomposition of mineral fertilizers based on (NH4)2HPO4 in the self-generated atmosphere and reasons for the deviation from the Arrhenius law.  相似文献   

11.
Two new gallium phosphates, [NH3(CH2)4NH3][Ga4(PO4)4 (HPO4)] (I) and [NH3(CH2)4NH3][Ga(PO4)(HPO4)] (II), have been synthesized under solvothermal conditions in the presence of 1,4-diaminobutane and their structures determined using room-temperature single-crystal X-ray diffraction data. Compound (I) (Mr=844.90, triclinic, space group P-1, a=9.3619(3), b=10.1158(3) and c=12.6456(5) Å, α=98.485(1), β=107.018(2) and γ=105.424(1)°; V=1070.39 Å3, Z=2, R=3.68% and Rw=4.40% for 2918 observed data [I>3(σ(I))]) consists of GaO4 and PO4 tetrahedra and GaO5 trigonal bipyramids linked to generate an open three-dimensional framework containing 4-, 6-, 8-, and 12-membered rings of alternating Ga- and P-based polyhedra. 1,4-Diaminobutane dications are located in channels bounded by the 12-membered rings in the two-dimensional pore network and are held to the framework by hydrogen bonding. Compound (II) (Mr=350.84, monoclinic, space group P21/c, a=4.8922(1), b=18.3638(6) and c=13.7468(5) Å, β=94.581(1)°; V=1227.76 Å3, Z=4, R=2.95% and Rw=3.37% for 2050 observed data [I>3(σ(I))]) contains chains of edge-sharing 4-membered rings of alternating GaO4 and PO4 tetrahedra constituting a backbone from which hang ‘pendant’ PO3(OH) groups. Hydrogen bonding between the GaPO framework and the diamine dications holds the structure together. A previously reported phase, [NH3(CH2)4NH3][Ga4(PO4)4(HPO4)] (V), structurally related but distinct from its stoichiometric equivalent, (I), has been prepared as a pure phase by this method. Two further materials, [NH3(CH2)5NH3][Ga4(PO4)4(HPO4)] (III) (tricli- nic, lattice parameters from PXD: a=9.3565(4), b=5.0156(2) and c=12.7065(4) Å, α=96.612(3), β=102.747(4) and γ=105.277(3)°) and [NH3(CH2)5NH3][Ga(PO4)(HPO4)] (IV) (Mr=364.86, monoclinic, space group P21/n, a=4.9239(2), b=13.2843(4) and c=19.5339(7) Å, β=96.858(1)°; V=1268.58 Å3, Z=4, R=3.74% and Rw=4.44% for 2224 observed room-temperature data [I>3(σ(I))]), were also prepared under similar conditions in the presence of 1,5-diaminopentane. (III) and (IV) are structurally related to, yet distinct from (I) and (II) respectively.  相似文献   

12.
The title compound is synthesized by solid state reaction of SrCO3, MgO, and (NH4)2HPO4 (air, 1303 K, 4 h and 1323 K, 4 h, 90% yield) and its structure is determined by powder XRD.  相似文献   

13.
The four‐component reaction of dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; DMAD), aromatic aldehydes, and malononitrile (=propanedinitrile) leads to polyfunctionalized 1,4‐dihydropyridine derivatives. The reaction proceeds at room temperature and in the presence of a catalytic amount (20%) of (NH4)2HPO4 as a base in aqueous media.  相似文献   

14.
Thermogravimetry-mass spectrometry (TG-MS) was used to study the effect of the inorganic salts (NH4)2SO4 and (NH4)2HPO4, active substances of many commercial forest fire retardants, on the pyrolysis of Pinus halepensis needles and their main components (cellulose, lignin and extractives). These salts seemed to affect the pyrolysis of cellulose by increasing significantly the char residue, decreasing the pyrolysis temperature and changing the composition of the evolved gases, that is, increasing levoglucosenone and decreasing oxygen containing volatile products. (NH4)2SO4 seemed to have negligible effect on the pyrolysis of lignin, while (NH4)2HPO4 increased the char residue and decrease the relative contribution of guaiacols in the evolved gases. No effects of the inorganic salts on the extractives were observed. Finally, the inorganic salts seemed to affect the pyrolysis of pine-needles, mainly the cellulose component, but the effects were not as intense as in the pyrolysis of cellulose.  相似文献   

15.
In systems containing (NH4)2HPO4 and K2HPO4, it is possible to determine ammonium and phosphate ions by titrating 2 aliquots using methyl orange as the only indicator. Potassium can be calculated by difference. About 20 min are required for a single analysis.  相似文献   

16.
Nanocrystalline NH4ZrH(PO4)2·H2O was synthesized by solid-state reaction at low heat using ZrOCl2·8H2O and (NH4)2HPO4 as raw materials. X-ray powder diffraction analysis showed that NH4ZrH(PO4)2·H2O was a layered compound with an interlayer distance of 1.148 nm. The thermal decomposition of NH4ZrH(PO4)2·H2O experienced four steps, which involves the dehydration of the crystal water molecule, deamination, intramolecular dehydration of the protonated phosphate groups, and the formation of orthorhombic ZrP2O7. In the DTA curve, the three endothermic peaks and an exothermic peak, respectively, corresponding to the first three steps' mass losses of NH4ZrH(PO4)2·H2O and crystallization of ZrP2O7 were observed. Based on Flynn–Wall–Ozawa equation and Kissinger equation, the average values of the activation energies associated with the NH4ZrH(PO4)2·H2O thermal decomposition and crystallization of ZrP2O7 were determined to be 56.720 ± 13.1, 106.55 ± 6.28, 129.25 ± 4.32, and 521.90 kJ mol−1, respectively. Dehydration of the crystal water of NH4ZrH(PO4)2·H2O could be due to multi-step reaction mechanisms: deamination of NH4ZrH(PO4)2 and intramolecular dehydration of the protonated phosphate groups from Zr(HPO4)2 are simple reaction mechanisms.  相似文献   

17.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

18.
In this paper, we report results of thermoanalytical investigation on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 in molar ratio 1:2. Differential thermal-thermogravimetric and X-ray diffraction analyses were performed in order to reveal the chemical transformations, which took place during heating of the individual compounds ZrOCl2·8H2O, (NH4)2HPO4 and the mixture ZrOCl2·8H2O:2(NH4)2HPO4. It was shown that the transformations in the mixture below 160 °C were connected with dehydration of ZrOCl2·8H2O and interaction between the components of the mixture, which resulted in the formation of NH4Cl, NH4H2PO4 and a mainly amorphous zirconium phase, most likely t-ZrO2. The zirconium component subsequently reacted with ammonium dihydrophosphate (below 200 °C) or with dehydrated phosphate derivatives (above 200 °C), which in both cases yielded an amorphous product. The interaction between the components of the mixture resulting in the formation of ZrP2O7 was completed by its crystallisation at 610 °C. Our study indicates an alternative low-temperature approach for the synthesis of the technologically important ZrP2O7 material.  相似文献   

19.
The monoammonium salt of γ-titanium phosphate has been prepared by hydrothermal treatment of π-Ti2O(PO4)2·2H2O in the presence of urea and phosphoric acid, and its crystal structure was obtained by Rietveld analysis using powder X-ray diffraction data. γ-Ti(PO4)(NH4HPO4) crystallizes in the monoclinic space group P21/m with a = 5.0725(3) Å, b = 6.3101(3) Å, c = 11.2435(5) Å, β = 97.980(3)° (Z = 2). The structure consists of 2D titanium phosphate layers in the ab-plane. The titanium atoms and one of the phosphate groups are located nearly in the ab-plane of the layer. All the oxygen atoms of this phosphate group are involved in titanium coordination sphere. The other phosphate group located in the layers edges links two neighboring titanium atoms in the a-direction through two of its oxygen atoms. The remaining two oxygens are pointed toward the interlayer space being involved in hydrogen bond interactions with the ammonium ions. Each ammonium ion is shared by four oxygens belonging to four different phosphate hydroxyl groups. γ-Ti(PO4)(NH4HPO4) is stable until 453 K, while above this temperature, it transforms to γ’-Ti(PO4)(NH4HPO4) high temperature polymorph stable until 573 K. Thermal decomposition of this material leads to cubic TiP2O7 structure, with previous formation of two intermediate pseudo-layered compounds: Ti(PO4)(NH4HP2O7)0.5 and Ti(PO4)(H2P2O7)0.5. The activation energy of thermal decomposition has been calculated as a function of the extent of conversion applying the Kissinger–Akahira–Sunose (KAS) isoconversional method to the thermogravimetric data.  相似文献   

20.
The kinetics of the reaction between the [Rh(NH3)5H2O]3+ ion and H3PO4 was studied by 31P NMR at 323?C343 K (E a = 100.9 ± 0.3 kJ/mol, lnA = 35.7 ± 0.1). An empirical dependence of the 31P chemical shift on the equilibrium pH was found. The acid dissociation constants of the coordinated H2PO 4 ? (3.9) and H PO 4 2? ions (9.1) were estimated. The chemical shifts of the [Rh(NH3)5H2PO4]2+, [Rh(NH3)5HPO4]+, and [Rh(NH3)5PO4]0 complex ions were 8.38 ± 0.03, 10.76 ± 0.05, and 13.63 ± 0.05 ppm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号