首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes [MBr(π-allyl)(CO)2(bipy)] (M = Mo, W, bipy = 2,2′-bipyridine) react with alkylxanthates (MIRxant), and N-alkyldithiocarbamates (MIRHdtc) (MI = Na or K), yielding complexes of general formula [M(S,S)- (π-allyl)(CO)2(bipy)] (M = Mo, (S,S) = Rxant (R = Me, Et, t-Bu, Bz), RHdtc (R = Me, Et); M = W, (S,S) = Extant). A monodentate coordentate coordination of the (S,S) ligand was deduced from spectral data. The reaction of [MoBr(π-allyl)(CO)2(bipy)] with MeHdtc and Mexant gives the same complexes whether pyridine is present or not. The complexes [Mo(S,S)(π-allyl)(CO)2(bipy)] ((S,S) = MeHdtc, Mexant) do not react with an excess of (S,S) ligand and pyridine.No reaction products were isolated from reaction of [MoBr(π-allyl)(CO)2(dppe)] with xanthates or N-alkyldithiocarbamates.  相似文献   

2.
The complexation and extraction properties of RC(S)NHP(X)(OiPr)2 [X = S, R = PhNH (HLI); X = O, R = PhNH (HLII), Ph (HLIII)] towards cobalt cations were studied. The nitrocellulose membrane was used as a carrier for HLI?III. The maximal degree of extraction of cobalt cations from an aqueous solution is observed at pH = 7.8–8.4. It was established that complexes formed are kept in a water solution on a surface of the carrier and washed away in 96% aqueous ethanol. The membrane modified by HLI allows extraction and concentration of Co(II) selectively, while the modification by HLIII leads to the selective extraction of Co(III).  相似文献   

3.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

4.
The reaction of [M(H(2)L(i))] (M = Cu, Zn) and U(acac)(4) in refluxing pyridine produced the trinuclear complexes [[ML(i)(py)(x)](2)U] [L(i) = N,N'-bis(3-hydroxysalicylidene)-R, R = 1,2-ethanediamine (i = 1), 2-methyl-1,2-propanediamine (i = 2), 1,2-cyclohexanediamine (i = 3), 1,2-phenylenediamine (i = 4), 4,5-dimethyl-1,2-phenylenediamine (i = 5), 1,3-propanediamine (i = 6), 2,2-dimethyl-1,3-propanediamine (i = 7), 2-amino-benzylamine (i = 8), or 1,4-butanediamine (i = 9); x = 0 or 1]. The crystal structures show that the central U(IV) ion adopts the same dodecahedral configuration in all of these compounds, while the Cu(II) ion coordination geometry and the Cu...U distance vary with the length of the diimino chain of the Schiff base ligand L(i). These geometrical parameters have a major influence on the magnetic properties of the complexes. For the smallest Cu...U distances (i = 1-5), the Cu-U coupling is antiferromagnetic and weak antiferromagnetic interactions are present between the Cu(II) ions, while for the largest Cu...U distances (i = 6-9), the Cu-U coupling is ferromagnetic and no interaction is observed between the Cu(II) ions. The magnetic behavior of the [[CuL(i)](2)Th] compounds (i = 1, 2), in which the Th(IV) ion is diamagnetic, confirms the presence of weak intramolecular antiferromagnetic coupling between the Cu(II) ions.  相似文献   

5.
Kofod P  Harris P 《Inorganic chemistry》2004,43(8):2680-2688
The (13)C chemical shifts of methylcobalt(III) compounds with saturated amine ligands in cis positions to the methyl group and a monodentate ligand, L = CN(-), NH(3), NO(2)(-), N(3)(-), H(2)O, or OH(-), in the trans position are reported. The amine ligands used, 1,2-ethanediamine (en), 1,3-propanediamine (tn), N,N'-bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet), N,N'-bis(3-aminopropyl)-1,2-ethanediamine (3,2,3-tet), and 1,4,8,11-tetraazacyclotetradecane (cyclam), all exert an apparent cis influence on the (13)C resonance signal of the coordinated methyl group. In the trans-[Co(en)(2)(CH(3))(L)](n+) series the (15)N resonance frequency of the coordinated en has also been measured. The influence of L on the en (15)N chemical shifts is reverse the influence on the methyl (13)C chemical shifts except in the case of L = NO(2)(-), which affects a further deshielding of the amine nitrogen nucleus. The methyl (1)J(CH) coupling constants in the trans-[Co(en)(2)(CH(3))(L)](n+) series range from 128.09 Hz (L = CN(-)) to 134.11 Hz (L = H(2)O). The crystal structures of trans-[Co(en)(2)(CH(3))(ClZnCl(3))], trans-[Co(3,2,3-tet)(CH(3))(N(3))]ClO(4), trans,trans-[(CH(3))(en)(2)Co(CN)Co(en)(2)(CH(3))](PF(6))(3)(CH(3)CN), and cis-[Co(en)(2)(CH(3))(NH(3))]ZnCl(4) were determined from low-temperature X-ray diffraction data.  相似文献   

6.
An aminophenol ligand, N,N,N′-tri(2-hydroxy-5-methylbenzyl)-1,2-ethanediamine, was prepared through the Mannich reaction, and structurally characterized by NMR, IR, MS and single-crystal X-ray diffraction. The title compound (C26H32N2O3, Mr = 420.54) belongs to the monoclinic system, space group P21/n with a = 8.6233(14), b = 10.2655(16), c = 26.017(4) ′, β = 95.797(2)o, V = 2291.3(6) ′3, Z = 4, the final R = 0.0461 and wR = 0.1139 for 4267 unique reflections (Rint = 0.028) with 11691 observed ones (I > 2σ(I)).  相似文献   

7.
Fluorinated ansa substituted cyclophosphazenes endo-FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) [Fc = ferrocenyl] (1) and exo-FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) (2) readily transform to the spirocyclic compound [FcCH(2)P(S)(CH(2)O)(2)PN](F(2)PN)(2) (3) not only in the presence of CsF but also with non-fluorinated bases such as Cs(2)CO(3), K(2)CO(3), KOBu(t), Et(3)N, DABCO, DBN, and DBU. The analogous tetrachloro ansa compound exo-FcCH(2)P(S)(CH(2)O)(2)[P(Cl)N](2)(Cl(2)PN) (5), however, did not transform to the chlorinated spiro compound (6) in the presence of these bases. With excess of CsF, P-Cl bonds of 5 were found to undergo fluorination leading to the formation of 2, which transformed to spirocyclic compound 3. Time dependent (31)P NMR spectroscopy was used to monitor this transformation. Crystal structure studies on the ansa substituted compounds 4 and 5 have shown weak bonding interactions involving C-H...Cl, C-H...O, and C-H...S interactions.  相似文献   

8.
The new one-dimensional azide-bridged manganese(III) polymer, [Mn(Sal2-1,2Pn)(N3)] n (I), where Sal2-1,2 Pn = N, N,N′-bis(salicylidene)-1,2-propanediamine, was prepared from a reaction mixture containing Sal2-1,2 Pn, MnCl2 · 2H2O and NaN3 (2: 1: 8 molar ratio) in methanol-chloroform (v/v 2: 1) and has been characterized by elemental analyses, FT-IR spectroscopy, and X-ray single-crystal diffraction. In the structure of I, Mn3+ ion is in a distorted octahedral geometry with an obvious Jahn-Teller distortion. The quadridentate Schiff-base ligand Sal2-1,2Pn is located in the equatorial plane. The azide ion acts as an end-to-end bridge to form the one-dimensional manganese(III) polymer.  相似文献   

9.
A phosphorus supported multisite coordinating ligand P(S)[N(Me)N=CH-C(6)H(4)-o-OH](3) (2) was prepared by the condensation of the phosphorus tris hydrazide P(S)[N(Me)NH(2)](3) (1) with o-hydroxybenzaldehyde. The reaction of 2 with M(OAc)(2).xH(2)O (M = Mn, Co, Ni, x = 4; M = Zn, x = 2) afforded neutral trinuclear complexes [P(S)[N(Me)N=CH-C(6)H(4)-o-O](3)](2)M(3) [M = Mn (3), Co (4), Ni (5), and Zn (6)]. The X-ray crystal structures of compounds 2-6 have been determined. The structures of 3-6 reveal that the trinculear metal assemblies are nearly linear. The two terminal metal ions in a given assembly have an N(3)O(3) ligand environment in a distorted octahedral geometry while the central metal ion has an O(6) ligand environment also in a slightly distorted octahedral geometry. In all the complexes, ligand 2 coordinates to the metal ions through three imino nitrogens and three phenolate oxygens; the latter act as bridging ligands to connect the terminal and central metal ions. The compounds 2-6 also show intermolecular C-H...S=P contacts in the solid-state which lead to the formation of polymeric supramolecular architectures. The observed magnetic data for the (s = 5/2)3 L(2)(Mn(II))(3) derivative, 3, show an antiferromagnetic nearest- and next-nearest-neighbor exchange (J = -4.0 K and J' = -0.15 K; using the spin Hamiltonian H(HDvV) = -2J(S(1)S(2) + S(2)S(3)) - 2J'S(1)S(3)). In contrast, the (s = 1)(3) L(2)(Ni(II))(3) derivative, 5, displays ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions (J = 4.43 K and J' = -0.28 K; H = H(HDvV)+ S(1)DS(1) + S(2)DS(2)+ S(3)DS(3)). The magnetic behavior of the L(2)(Co(II))(3) derivative, 4, reveals only antiferromagnetic exchange analogous to 3 (J = -4.5, J' = -1.4; same Hamiltonian as for 3).  相似文献   

10.
Anionic carbonato and oxalato cobalt(III) nitrogen mustard complexes   总被引:1,自引:0,他引:1  
Synthetic approaches to cobalt(III) complexes [Co(L)(L')2] containing the bidentate dialkylating nitrogen mustard N,N-bis(2-chloroethyl)-1,2-ethanediamine (L = dce) together with anionic ancilliary ligands (L') which are either carbonato (CO3(2-)), oxalato (ox2-), bis(2-hydroxyethyl)dithiocarbamato (bhedtc-), 2-pyridine carboxylato (pico-) or 2-pyrazine carboxylato (pyzc-) were investigated. Synthetic routes were developed using the related amines N,N-diethyl-1,2-ethanediamine (dee) and 1,2-ethanediamine (en). The complexes [Co(CO3)2(L)]- (L = dee 1, dce 2), [Co(ox)2(L)]- (L = dee 3, dce 4), [Co(bhedtc)2(dee)]+ 5, [Co(bhedtc)2(en)]+ 6, mer-[Co(pico)3], mer-[Co(pyzc)]3 7 and [Co(pico)2(dee)]+ 8 were prepared and were characterised by IR, UV-Vis, 1H and 13C[1H] NMR spectroscopy, mass spectrometry and cyclic voltammetry. [Co(bhedtc)2(en)]BPh4 6b and trans(O)-[Co(pico)2(dee)]ClO4 8 were characterised by X-ray crystallography. In vitro biological tests were carried out on complexes 1-4 in order to assess the degree to which coordination of the mustard to cobalt attenuated its cytotoxicity, and the differential toxicity in air vs. nitrogen.  相似文献   

11.
The reactivity of diethyl azodicarboxylate (DEAD)/diisopropyl azodicarboxylate (DIAD) with P(III) compounds bearing oxygen or nitrogen substituents is explored. Compounds with structures quite different from that of Morrison-Brunn-Huisgen intermediate R'(3)P(+)N(CO(2)R)N(-)(CO(2)R) (1), observed in the Mitsunobu reaction, have been established by using X-ray crystallography and NMR spectroscopy. Thus reactions with X(6-t-Bu-4-Me-C(6)H(2)O)(2)P-NH-t-Bu [X = S (8), CH(2) (9)] or XP(mu-N-t-Bu)(2)P-NH-t-Bu [X = Cl (14) or NH-t-Bu (15)] and DEAD/DIAD lead to phosphinimine-carbamate-type of products X[6-t-Bu-4-Me-C(6)H(2)O](2)P[N-t-Bu][N(CO(2)R)NH(CO(2)R)] [X = S, R = Et (16); X = CH(2), R = Et (17); X = CH(2), R = i-Pr (18)] or XP(mu-N-t-Bu)(2)P(N-t-Bu)[N-(CO(2)-i-Pr)-N(H)(CO(2)-i-Pr) [X = Cl (19), NH-t-Bu (20)]. Treatment of 19 with 2,2,2-trifluoroethanol afforded the product [(CF(3)CH(2)O)P(mu-N-t-Bu)(2)P(+)(NH-t-Bu)[N(CO(2)-i-Pr)(HNCO(2)-i-Pr)]][Cl(-)] (21) whose structure is close to one of the intermediates proposed in the Mitsunobu reaction. The isocyanate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P-NCO (10) underwent 1,3-(P,C) cycloaddition with DEAD/DIAD to lead to CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P[N(CO(2)R)N(CO(2)R)-C(O)-N] [R = Et (22), i-Pr (23)]. Reaction of 22-23 with 1,1'-bi-2-naphthol or catechol leads to novel tetracoordinate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(2,2'-OC(10)H(6)-C(10)H(6)-OH)[NC(O)-(CO(2)R)NH(CO(2)R)] [R = Et (24), i-Pr (25)] or pentacoordinate CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2)P(1,2-O(2)C(6)H(4))[NHC(O)-N(CO(2)R)NH(CO(2)R)] [R = Et (26), i-Pr (27)] compounds in which the original NCO residue is retained; this mode of reactivity is quite different from that observed for the MBH betaine 1. In 27, the nitrogen, rather than the oxygen, occupies an apical position of the trigonal bipyramidal phosphorus violating the commonly assumed preference rules for apicophilicity. It is shown that the previously reported azide derivative 3, obtained from the reaction of 11 with DIAD, undergoes a Curtius-type rearrangement to lead to the fused cyclodiphosphazane [(CH(2)(6-t-Bu-4-Me-C(6)H(2)O)(2))P(OC(O-i-Pr)NN(CO(2)-i-Pr)N)](2) (28); this compound is in equilibrium with its monomeric form in solution at >300 K. Finally, reaction of S(6-t-Bu-4-Me-C(6)H(2)O)(2)P(OPh) (13) with DIAD gave the hexacoordinate compound S[6-t-Bu-4-Me-C(6)H(2)O](2)P(OPh)[N(CO(2)-i-Pr)NC(O-i-Pr)O] (30) with an intramolecular S-->P bond. X-ray crystallographic evidence for compounds 16, 19, 21, 22, 25, 27, 28, and 30 has been provided.  相似文献   

12.
Kühl O  Blaurock S 《Inorganic chemistry》2004,43(21):6543-6545
The reaction of the unsymmetric bisphosphanyl urea ligand P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2) with [Pd(cod)Cl(2)] (cod = 1,5-cyclooctadiene) results in the chiral palladacycle (R,S)(A2)-[Pd(kappa(2)-P,P-[P(OC(6)H(3)Bu(t)(2)-2,4)(2)N(Me)C(O)N(Me)PPh(2)]Cl(2)]. The chirality of the title compound is caused by the tilting of the central, six-membered PdP(2)N(2)C ring along one of the two P-N vectors and comprises two chiral planes and one chiral axis.  相似文献   

13.
The disilene R*PhSi=SiPhR* (R* = supersilyl = SitBu3), which can be quantitatively prepared by dehalogenation of the disilane R*PhClSi-SiBrPhR* with NaR* (yellow, water- and air-sensitive crystals; decomp at ca. 70 degrees C; Si=Si distance 2.182 A), is comparatively reactive. It transforms 1) with Cl2, Br2, HCl, HBr, and HOH under 1,2-addition into disilanes R*PhXSi-SiX'PhR* (X/X' = Hal/Hal, H/Hal, H/OH), 2) with O2, S8, and Sen under insertion into 1,3-disiletanes R*PhSi(-Y-)2SiPhR* (Y = O, S, Se), 3) with Me2C=CH2 under ene reaction into the disilane R*PhRSi-SiHPhR* (R = CH2-CMe=CH2), 4) with N2O, Ten, tBuN identical to C, and Me3SiN=N=N under [2 + 1] cycloaddition into disiliranes -R*PhSi-Y-SiPhR*- (Y = O, Te, C=NtBu, NSiMe3; P4 adds 2 molecules of disilene), 5) with CO2, COS, PhCHO, and Ph2CS under [2 + 2] cycloaddition into disiletanes -R*PhSi-SiPhR*-Y-CO- (Y = O, S) as well as -R*PhSi-SiPhR*-Y-CRPh- (Y/R = O/H, S/Ph), 6) with CS2 and CSe2 under [2 + 3] cycloaddition into ethenes R*2Ph2Si2Y2C = CY2Si2Ph2R*2 (Y = S, Se), and 7) with CH2 = CMe-CMe=CH2 and Ph2CO under [2 + 4] cycloaddition into "Diels-Alder adducts". X-ray structure analyses of seven of these compounds are presented.  相似文献   

14.
Complexes [(BPMEN)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and [(TPA)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (2, TPA = tris(2-pyridylmethyl)amine) are among the best nonheme iron-based catalysts for bioinspired oxidation of hydrocarbons. Using EPR and (1)H and (2)H NMR spectroscopy, the iron-oxygen intermediates formed in the catalyst systems 1,2/H(2)O(2); 1,2/H(2)O(2)/CH(3)COOH; 1,2/CH(3)CO(3)H; 1,2/m-CPBA; 1,2/PhIO; 1,2/(t)BuOOH; and 1,2/(t)BuOOH/CH(3)COOH have been studied (m-CPBA is m-chloroperbenzoic acid). The following intermediates have been observed: [(L)Fe(III)(OOR)(S)](2+), [(L)Fe(IV)═O(S)](2+) (L = BPMEN or TPA, R = H or (t)Bu, S = CH(3)CN or H(2)O), and the iron-oxygen species 1c (L = BPMEN) and 2c (L = TPA). It has been shown that 1c and 2c directly react with cyclohexene to yield cyclohexene oxide, whereas [(L)Fe(IV)═O(S)](2+) react with cyclohexene to yield mainly products of allylic oxidation. [(L)Fe(III)(OOR)(S)](2+) are inert in this reaction. The analysis of EPR and reactivity data shows that only those catalyst systems which display EPR spectra of 1c and 2c are able to selectively epoxidize cyclohexene, thus bearing strong evidence in favor of the key role of 1c and 2c in selective epoxidation. 1c and 2c were tentatively assigned to the oxoiron(V) intermediates.  相似文献   

15.
Yao MX  Zheng Q  Cai XM  Li YZ  Song Y  Zuo JL 《Inorganic chemistry》2012,51(4):2140-2149
By the reactions of Mn(III) Schiff-base complexes with the tricyanometalate building block, [(Tp)Cr(CN)(3)](-) (Tp = Tris(pyrazolyl) hydroborate), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (1) and [Mn((S,S)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (2) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-Salphen)Cr(Tp)(CN)(3)](n) (3) and [Mn((S,S)-Salphen)Cr(Tp)(CN)(3)](n) (4) (Salphen = N,N'-1,2-diphenylethylene-bis(salicylideneiminato) dianion), have been successfully synthesized. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1 and 2, and neutral cyano-bridged zigzag double chains in 3 and 4. Magnetic studies show that antiferromagnetic couplings are operative between Cr(III) and Mn(III) centers bridged by cyanide. Complexes 1 and 2 are the rare examples of chiral ferrimagnets; while complexes 3 and 4 exhibit a coexistence of chirality and spin-glass behavior in a 1D chain.  相似文献   

16.
The title compound, 4-hydroxy-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide-oxalohydrazide (1:1), is determined using X-ray diffraction techniques and the molecular structure is also optimized at the B3LYP/6-31G(d,p) level using density functional theory (DFT). The asymmetric unit consists of four independent molecules. The oxalohydrazide molecules have the centre of symmetry at the mid-point of the central C-C bond. Each thiazine ring adopts a half-chair conformation. Intermolecular C-H...O, N-H...O and N-H...N hydrogen bonds produce R 2 2 (10), R 2 2 (13), R 3 3 (12) and R 3 3 (15) rings, which lead to one-dimensional polymeric chains. An extensive three-dimensional supramolecular network of N-H...N, N-H...O, C-H...O and O-H...O hydrogen bonds is responsible for crystal structure stabilization.  相似文献   

17.
Cyclohexane (1), oxygen-, sulfur-, and/or nitrogen-containing six-membered heterocycles 2-5, cyclohexanone (6), and cyclohexanone derivatives 7-16 were studied theoretically [B3LYP/6-31G(d,p) and PP/IGLO-III//B3LYP/6-31G(d,p) methods] to determine the structural (in particular C-H bond distances) and spectroscopic (specifically, one bond (1)J(C-H) NMR coupling constants) consequences of stereoelectronic hyperconjugative effects. The results confirm the importance of n(X) --> sigma*(C-H)(app) (where X = O, N), sigma(C-H)(ax) --> pi*(C=O), sigma(S-C) --> sigma*(C-H)(app), sigma(C-S)-->sigma*(C-H)(app), beta-n(O) --> sigma*(C-H), and sigma(C-H) --> sigma*(C-H)(app) hyperconjugation, as advanced in previous theoretical models. Calculated r(C-H) bond lengths and (1)J(C-H) coupling constants for C-H bonds participating in more than one hyperconjugative interaction show additivity of the effects.  相似文献   

18.
Novel molybdenum dithiolene compounds having neighboring amide groups as models for molybdoenzymes, (NEt(4))(2)[Mo(IV)O{1,2-S(2)-3,6-(RCONH)(2)C(6)H(2)}(2)] (R = CH(3), CF(3), t-Bu, Ph(3)C), were designed and synthesized. The contributions of the NH...S hydrogen bond to the electrochemical properties of the metal ion and the reactivity of the O-atom-transfer reaction were investigated by a comparison with [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-). The MoOS(4) core of [Mo(IV)O{1,2-S(2)-3,6-(CH(3)CONH)(2)C(6)H(2)}(2)](2)(-) shows no significant geometrical difference from that of [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-) in the crystal. The hydrogen bonds positively shifted the Mo(IV/V) redox potential and accelerated the reduction of Me(3)NO.  相似文献   

19.
The stability of phosphino(trimethylsilyl)carbenes bearing cyclic diamino substituents on phosphorus is strongly dependent on the steric hindrance of the nitrogen substituents. Phosphinocarbenes 3 and 7, derived from the trans-N,N'-diisopropylcyclohexane-1,2-diamine and N,N'-diisopropyl-1,2-ethanediamine, are not observed; instead the 1,3-diphosphete 4 and a novel six-membered heterocycle 8, which results from the dimerization of 3 and the reaction of 7 with its diazo precursor 6, respectively, have been isolated. In contrast, the phosphino(silyl)carbene 14 derived from N,N'-di-tert-butyl-1,2-ethanediamine has been isolated in high yield. By using the enantiomerically pure (S,S)-, and (R,R)-N,N'-di-tert-butyl-1,2-diphenyl-1,2-ethanediamines, the first optically pure phosphino(sily)carbenes (S,S)-17 and (R,R)-17 have been prepared. They react with methyl acrylate to give the corresponding cyclopropanes (S,S,R,R)-19 and (R,R,S,S)-19 with a total syn diastereoselectivity and an excellent enantioselectivity (de>98 %).  相似文献   

20.
The reactions of fluorophosphazenes, endo ansa FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) (1) (Fc = ferrocenyl) and spiro [RCH(2)P(S)(CH(2)O)(2)PN](F(2)PN)(2) (R = Fc (2), C(6)H(5) (3)], with dilithiated diols have been explored. The study resulted in the formation of the first examples of ansa-spiro substituted fluorinated cyclophosphazenes as well as a bisansa substituted fluorophosphazene. The bisansa compound [1,3-[FcCH(2)P(S)(CH(2)O)(2)]][1,5-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (4) was found to be nongeminaly substituted with both the ansa rings in cis configuration, which is in stark contrast to the observations on cyclic chlorophosphazenes where geminal bisansa formation has been observed. The ansa-spiro compounds (5-7) underwent the ansa to spiro transformation leading to dispiro compounds in the presence of catalytic amounts of CsF at room temperature. Two of the ansa-spiro compounds, endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (5) and endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[FcCH(2)P(S)(CH(2)O)(2)]]N(3)P(3)F(2) (6), were structurally characterized, and the crystal structures indicate boat-chair conformation as well as crown conformation for the eight-membered ansa rings. Weak C-H.F-P interactions observed in the crystal structures of the ansa-spiro substituted fluorophosphazene derivatives have been analyzed and compared with C-H.F-P interactions of other fluorinated phosphazenes and thionyl phosphazenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号