首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
4.
In this article, a reduced‐order modeling approach, suitable for active control of fluid dynamical systems, based on proper orthogonal decomposition (POD) is presented. The rationale behind the reduced‐order modeling is that numerical simulation of Navier–Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. The possibility of obtaining reduced‐order models that reduce the computational complexity associated with the Navier–Stokes equations is examined while capturing the essential dynamics by using the POD. The POD allows the extraction of a reduced set of basis functions, perhaps just a few, from a computational or experimental database through an eigenvalue analysis. The solution is then obtained as a linear combination of this reduced set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations (PDEs). It is used here in active control of fluid flows governed by the Navier–Stokes equations. In particular, flow over a backward‐facing step is considered. Reduced‐order models/low‐dimensional dynamical models for this system are obtained using POD basis functions (global) from the finite element discretizations of the Navier–Stokes equations. Their effectiveness in flow control applications is shown on a recirculation control problem using blowing on the channel boundary. Implementational issues are discussed and numerical experiments are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the solution of heterogeneous problems by the interface control domain decomposition (ICDD) method, a strategy introduced for the solution of partial differential equations in computational domains partitioned into subdomains that overlap. After reformulating the original boundary value problem by introducing new additional control variables, the unknown traces of the solution at internal subdomain interfaces; the latter are determined by requiring that the (a priori) independent solutions in each subdomain undergo the minimization of a suitable cost functional. We provide an abstract formulation for coupled heterogeneous problems and a general theorem of well‐posedness for the associated ICDD problem. Then, we illustrate and validate an efficient algorithm based on the solution of the Schur‐complement system restricted solely to the interface control variables by considering two kinds of heterogeneous boundary value problems: the coupling between pure advection and advection–diffusion equations and the coupling between Stokes and Darcy equations. In the latter case, we also compare the ICDD method with a classical approach based on the Beavers–Joseph–Saffman conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A heterogeneous domain decomposition approach is followed to simulate the unsteady wavy flow generated by a body moving beneath a free surface. Attention being focused on complex free surface configurations, including wave‐breaking phenomena, a two‐fluid viscous flow model is used in the free surface region to capture the air–water interface (via a level‐set technique), while a potential flow approximation is adopted to describe the flow far from the interface. Two coupling strategies are investigated, differing in the transmission conditions. Both the adopted approaches make use of the inviscid velocity field as boundary condition in the Navier–Stokes solution. For validation purposes, two different two‐dimensional non‐breaking flows are simulated. Domain decomposition results are compared with both fully viscous and fully inviscid results, obtained by solving the corresponding equations in the whole fluid domain, and with available experimental data. Finally, the unsteady evolution of a steep breaking wave is followed and some of the physical phenomena, experimentally observed, are reproduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
11.
In this paper, we present an explicit formulation for reduced‐order models of the stabilized finite element approximation of the incompressible Navier–Stokes equations. The basic idea is to build a reduced‐order model based on a proper orthogonal decomposition and a Galerkin projection and treat all the terms in an explicit way in the time integration scheme, including the pressure. This is possible because the reduced model snapshots do already fulfill the continuity equation. The pressure field is automatically recovered from the reduced‐order basis and solution coefficients. The main advantage of this explicit treatment of the incompressible Navier–Stokes equations is that it allows for the easy use of hyper‐reduced order models, because only the right‐hand side vector needs to be recovered by means of a gappy data reconstruction procedure. A method for choosing the optimal set of sampling points at the discrete level in the gappy procedure is also presented. Numerical examples show the performance of the proposed strategy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A method is developed for performing a local reduction of the governing physics for fluid problems with domains that contain a combination of narrow and non‐narrow regions, and the computational accuracy and performance of the method are measured. In the narrow regions of the domain, where the fluid is assumed to have no inertia and the domain height and curvature are assumed small, lubrication, or Reynolds, theory is used locally to reduce the two‐dimensional Navier–Stokes equations to the one‐dimensional Reynolds equation while retaining a high degree of accuracy in the overall solution. The Reynolds equation is coupled to the governing momentum and mass equations of the non‐narrow region with boundary conditions on the mass and momentum flux. The localized reduction technique, termed ‘stitching,’ is demonstrated on Stokes flow for various geometries of the hydrodynamic journal bearing—a non‐trivial test problem for which a known analytical solution is available. The computational advantage of the coupled Stokes–Reynolds method is illustrated on an industrially applicable fully‐flooded deformable‐roll coating example. The examples in this paper are limited to two‐dimensional Stokes flow, but extension to three‐dimensional and Navier–Stokes flow is possible. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The paper deals with the numerical solution of fluid dynamics using the boundary‐domain integral method (BDIM). A velocity–vorticity formulation of the Navier–Stokes equations is adopted, where the kinematic equation is written in its parabolic form. Computational aspects of the numerical simulation of two‐dimensional flows is described in detail. In order to lower the computational cost, the subdomain technique is applied. A preconditioned Krylov subspace method (PKSM) is used for the solution of systems of linear equations. Level‐based fill‐in incomplete lower upper decomposition (ILU) preconditioners are developed and their performance is examined. Scaling of stopping criteria is applied to minimize the number of iterations for the PKSM. The effectiveness of the proposed method is tested on several benchmark test problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Numerical methods based on geometrical multiscale models of blood flows solve for averaged flow statistics on a network of vessels while providing more detailed information about fluid dynamics in a specific region of interest. In such an approach, a 3D model based on the Navier–Stokes equations posed in a domain with rigid walls is often used to describe blood flow dynamics in the refined region. While ignoring elasticity effects in 3D models is plausible in certain applications and saves computational time significantly, coupling such models with 1D flow models may result in non‐physiological phenomena in the computed solutions. Thus, the immediate coupling conditions based on continuity of normal stresses, flow rate, pressure, or a combination of thereof do not account for the inconsistency between elasticity effects in the 1D model and the non‐compliance of the 3D model. In this paper, we introduce and study an auxiliary absorbing 0D model, which is placed at the interface between 1D and 3D models. A virtual device mimics the effect of the 3D model compliance and hence reduces pressure wave reflection and instabilities caused by the inconsistency. The absorbing model is developed from basic mechanical principles. As a result, parameters of the 0D model can be designed based on hemodynamic data. We analyze the stability of the geometrical multiscale model and perform several numerical experiments to assess its computational efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We present in this paper an integrated approach to compute quickly an incompressible Navier–Stokes (NS) flow in a section of a large blood vessel using medical imaging data. The goal is essentially to provide a first‐order approximation of some main quantities of interest in cardiovascular disease: the shear stress and the pressure on the wall. The NS solver relies on the L2 penalty approach pioneered by Caltagirone and co‐workers and combines nicely with a level set method based on the Mumford–Shah energy model. Simulations on stenosis cases based on angiogram are run in parallel with MatlabMPI on a shared‐memory machine. While MatlabMPI communications are based on the load and save functions of Matlab and have high latency indeed, we show that our Aitken–Schwarz domain decomposition algorithm provides a good parallel efficiency and scalability of the NS code. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A semi‐implicit method for coupled surface–subsurface flows in regional scale is proposed and analyzed. The flow domain is assumed to have a small vertical scale as compared with the horizontal extents. Thus, after hydrostatic approximation, the simplified governing equations are derived from the Reynolds averaged Navier–Stokes equations for the surface flow and from the Darcy's law for the subsurface flow. A conservative free‐surface equation is derived from a vertical integral of the incompressibility condition and extends to the whole water column including both, the surface and the subsurface, wet domains. Numerically, the horizontal domain is covered by an unstructured orthogonal grid that may include subgrid specifications. Along the vertical direction a simple z‐layer discretization is adopted. Semi‐implicit finite difference equations for velocities and a finite volume approximation for the free‐surface equation are derived in such a fashion that, after simple manipulation, the resulting discrete free‐surface equation yields a single, well‐posed, mildly nonlinear system. This system is efficiently solved by a nested Newton‐type iterative method that yields simultaneously the pressure and a non‐negative fluid volume throughout the computational grid. The time‐step size is not restricted by stability conditions dictated by friction or surface wave speed. The resulting algorithm is simple, extremely efficient, and very accurate. Exact mass conservation is assured also in presence of wetting and drying dynamics, in pressurized flow conditions, and during free‐surface transition through the interface. A few examples illustrate the model applicability and demonstrate the effectiveness of the proposed algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A parallel solver based on domain decomposition is presented for the solution of large algebraic systems arising in the finite element discretization of mechanical problems. It is hybrid in the sense that it combines a direct factorization of the local subdomain problems with an iterative treatment of the interface system by a parallel GMRES algorithm. An important feature of the proposed solver is the use of a set of Lagrange multipliers to enforce continuity of the finite element unknowns at the interface. A projection step and a preconditioner are proposed to control the conditioning of the interface matrix. The decomposition of the finite element mesh is formulated as a graph partitioning problem. A two-step approach is used where an initial decomposition is optimized by non-deterministic heuristics to increase the quality of the decomposition. Parallel simulations of a Navier–Stokes flow problem carried out on a Convex Exemplar SPP system with 16 processors show that the use of optimized decompositions and the preconditioning step are keys to obtaining high parallel efficiencies. Typical parallel efficiencies range above 80%. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号