首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
应用比例边界有限元法(SBFEM)求解了频域下波浪与刚性薄板防波堤相互作用问题。求解中将整个计算区域分为薄板周围的有限子域和直到无限远处的无限子域。有限子域的比例中心设置在薄板的下端,这时薄板的两侧为侧边面,而无限子域的比例中心设置在无限子域与有限子域的交界上,同时将水底和自由水面做为平行侧边面。应用加权余量法在每个子域内推导出比例边界有限元方程,然后在有限子域与无限子域交界上匹配求解。通过与解析解的对比,证明了这种方法的精确性,而后对不同类型的薄板防波堤进行了计算,并给出了反射和透射系数的变化规律。  相似文献   

2.
A momentum source function derived from the linear wave theory is introduced into the weakly compressible smoothed particle hydrodynamic (SPH) model for the long-time simulation of regular and irregular wave generation problems. Wave absorption is realized by adding a velocity attenuation term into the governing momentum equation. The performances of the wave maker are tested under different wave conditions. The wave maker is then applied to the study of the challenging processes, such as random wave breaking on the reef-face or the reef-crest, wave setup and spectral transfer of wave energy from the peak frequency to lower frequencies over the reef-flat. The predicted results are compared with the experimental data and a good agreement is obtained. The SPH model with a non-reflective spectral wave maker can be used as a practical tool for studying wave interaction with coastal structures.  相似文献   

3.
对一维波动方程的SPH(smoothed particle hydrodynamics)格式和有限差分格式进行比较,并采用SPH法模拟了一维应力/应变波, 获得1个可衡量SPH法模拟应力波准确性的重要指标。结果表明,SPH法模拟应力波传播中采用的光滑长度必须不小于粒子间距;采用B-样条核函数和高斯型核函数能够获得良好的应力波图像,而二次型核函数不能,因此二次型核函数不适用于冲击动力学的数值计算。  相似文献   

4.
基于SPH法的二维矩形液舱晃荡研究   总被引:3,自引:1,他引:3  
液体晃荡是一种复杂的流体运动现象,自由液面的存在使得该现象具有很强的非线性和随机性。针对二维矩形液舱在不同振幅水平激励下的纵荡问题,应用SPH法对其进行了数值研究。首先计算了小振幅激励下的纵荡,计算结果分别与线性理论解、文献VOF法结果及文献SPH法结果作了比较分析,以验证所建数值模型的合理性;然后计算了液舱在大振幅水平激励下的纵荡,着重分析了不同振幅下液体晃荡的速度向量图、液面波动时程、压强波动时程、动量波动时程以及波动的频谱图,并将计算所得液面波动结果与小振幅激励下的液面波动结果作了比较。分析结果表明,在大振幅水平激励下,液面波动的波峰值较小振幅下的结果有较为明显的增大,而波谷值则无过大的变化,总体波动幅值比小振幅下的结果大;随着激励幅值的增大,液面波动幅值呈现明显增大的趋势,压强的整体波动幅值也呈增大趋势,动量波动的均值亦有明显增大;波动能量随着激励幅值的增大而增大并向第一阶频率区域集中。SPH法对处理液体大幅晃荡这种具有自由表面大变形的问题有十分优越的特性。  相似文献   

5.
Sloshing is a common phenomenon in nature and industry, and it is important in many fields, such as marine engineering and aerospace engineering. To reduce the sloshing load on the side walls, the topology optimization and optimal control methods are used to design the shape of the board, which is fixed in the middle of the tank. The results show that the new board shape, which is designed via topology optimization, can significantly reduce the sloshing load on the side wall.  相似文献   

6.
提出一种设置运动边界条件的方法,研究边界附近流体粒子积分截断和非物理穿透边界的问题。边界外的虚粒子在每个时间步由边界附近流体粒子对称生成,赋予相应的物理量,并在虚粒子中引入排斥力,利用拉格朗日形式的N‐S方程自编SPH程序,参考一维激波管的精确解验证边界方法的适用性,研究运动边界条件在计算模型中应用。激波管的模拟结果与精确解基本一致,且在运动边界模型中也计算获得合理的结果。文中提出的运动边界条件,避免了边界附近流体粒子积分截断问题,阻止流体粒子在边界处发生非物理穿透的现象。  相似文献   

7.
In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can handle large deformations of the free surface with high accuracy. The governing equations are solved based on the SPH particle interaction models and the incompressible algorithm of pressure projection is implemented by enforcing the constant particle density. The two‐equation kε model is an effective way of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment and computations of wave overtopping of a sloping sea wall. The computations are validated against the experimental and numerical data found in the literatures and good agreement is observed. Besides, the convergence behaviour of the numerical scheme and the effects of particle spacing refinement and turbulence modelling on the simulation results are also investigated in further detail. The sensitivity of the computed wave breaking and overtopping on these issues is discussed and clarified. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
为了探讨铝飞片撞击陶瓷材料时的层裂现象,采用改进SPH方法模拟应力波在陶瓷材料中的传播。结果表明,当离散粒子分布不均匀时,数值模拟计算的自由面速度时程曲线与实测曲线吻合良好。对比CSPM方法,改进SPH方法的精度更高。提出适用于数值模拟的陶瓷材料损伤演化方程,对脉冲载荷下陶瓷/钢层合板层裂的破坏过程进行数值模拟,结果表明,由于陶瓷的波阻抗高于钢的,且抗压强度远高于抗拉强度,因此拉应力引起的层裂破坏是主要的。即使在材料内部传播的只是弹性压缩波,当弹性波到达材料界面时,由界面反射引起的卸载波也能导致陶瓷发生层裂破坏。  相似文献   

9.
In this paper we wish to demonstrate to what extent the numerical method regularized smoothed particle hydrodynamics (RSPH) is capable of modelling shocks and shock reflection patterns in a satisfactory manner. The use of SPH based methods to model shock wave problems has been relatively sparse, both due to historical reasons, as the method was originally developed for studies of astrophysical gas dynamics, but also due to the fact that boundary treatment in Lagrangian methods may be a difficult task. The boundary conditions have therefore been given special attention in this paper. Results presented for one quasi-stationary and three non-stationary flow tests reveal a high degree of similarity, when compared to published numerical and experimental data. The difference is found to be below 5, in the case where experimental data was found tabulated. The transition from regular reflection (RR) to Mach reflection (MR) and the opposite transition from MR to RR are studied. The results are found to be in close agreement with the results obtained from various empirical and semi-empirical formulas published in the literature. A convergence test shows a convergence rate slightly steeper than linear, comparable to what is found for other numerical methods when shocks are involved.  相似文献   

10.
An application of smoothed particle hydrodynamics (SPH) to simulation of soil–water interaction is presented. In this calculation, water is modeled as a viscous fluid with week compressibility and soil is modeled as an elastic–perfectly plastic material. The Mohr–Coulomb failure criterion is applied to describe the stress states of soil in the plastic flow regime. Dry soil is modeled by one-phase flow while saturated soil is modeled by separate water and soil phases. Interaction between soil and water is taken into account by means of pore water pressure and seepage force. Simulation tests of soil excavation by a water jet are calculated as a challenging example to verify the broad applicability of the SPH method. The excavations are carried out in two different soil models, one is dry soil and the other is fully saturated soil. Numerical results obtained in this paper have shown that the gross discontinuities of soil failure can be simulated without any difficulties. This supports the feasibility and attractiveness of this a new approach in geomechanics applications. Advantages of the method are robustness, conceptual simplicity and relative ease of incorporating new physics.  相似文献   

11.
By using the kernel function of the smoothed particle hydrodynamics (SPH) and modification of statistical volumes of the boundary points and their kernel functions, a new version of smoothed point method is established for simulating elastic waves in solid. With the simplicity of SPH kept, the method is easy to handle stress boundary conditions, especially for the transmitting boundary condition. A result improving by de-convolution is also proposed to achieve high accuracy under a relatively large smooth length. A numerical example is given and compared favorably with the analytical solution.  相似文献   

12.
由于爆炸螺栓解锁过程具有瞬时性、变形大等特点,同时接触爆炸过程中交界面处介质阻抗相差 较大,因此基于计及材料强度的SPH 方法,在控制方程的粒子近似过程中将其转化为粒子密度及质量对物理 量近似过程影响较小的形式,建立了爆炸螺栓三维SPH 数值模型,分析了爆炸螺栓解锁过程中的冲击特性。 同时,通过与LS-DYNA软件的计算结果进行对比,验证了本文所建立数值模型的准确性和可靠性。  相似文献   

13.
In this paper computational results for two different types of shock wave / turbulent boundary layer interaction flows are presented. It is shown that upstream effects of the shock induced separation cannot be reproduced by Wilcox's (1991) k--model, whereas downstream of the interaction, predictions of pressure distribution and skin friction are acceptable. The inclusion of the compressible part of the dissipation rate and the pressure dilatation in the model has noticeable, but not dramatic effects on wall pressure and skin friction in the selected flow cases.  相似文献   

14.
The problem of the diffraction of surface waves, obliquely incident on a partially immersed fixed vertical barrier in deep water, is solved approximately by reducing it to the solution of an integral equation, for small angle of incidence of the incident wave. The corrections to the reflection and transmission coefficients over their normal incidence values for small angle of incidence are obtained and presented graphically for some intermediate values of wave numbers.  相似文献   

15.
An analytical approach is proposed here to study scattering of deep water waves by a submerged or a surface piercing vertical porous barrier. It involves a connection between two wave potentials of which one is the solution of a boundary value problem associated with wave scattering by the porous barrier and the other is the solution of a complementary type problem where barrier and gap positions are interchanged and solid barrier takes the position of the porous barrier. The connection also involves an auxiliary or a connection wave potential. The potential for the solid barrier problem involves incident wave forcing while the auxiliary potential describes a solid barrier type problem that involves a non-physical forcing. The solution procedure of Ursell (Ursell, 1947) is chosen to solve these boundary value problems explicitly in the case of normal wave incidence as it also determines necessary exact behavior of the potential at the barrier edge. The reflection coefficients are also connected and the reflection amplitudes of the normally incident wave against the vertical porous barriers are obtained analytically. Numerical results for reflection and transmission coefficients are presented.  相似文献   

16.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
SPH方法在模拟线弹性波传播中的运用   总被引:4,自引:0,他引:4  
通过对固体中波动问题的模拟建立了一种光滑粒子法的新形式,一种运用SPH的核函数的类似有限体积法的计算方法。通过对统计体积的修正以及对边界粒子的核函数修正,较好地解决了SPH方法中长期以来制约其被广泛应用的主要问题之一边界条件的表述。在此基础上成功地在光滑粒子法中实现了透射边界条件的模拟。同时利用反卷积修正使得较大粒子间距下的计算结果的精度大大提高。这种方法不但保持了SPH的简单性,而且很容易实现应力边界条件。  相似文献   

18.
修正SPH方法在自由表面模拟中的应用   总被引:1,自引:0,他引:1  
对传统光滑粒子动力学(SPH)方法进行修正,提出了一种密度初始化方法,同时采用一种新的固壁边界处理方法,模拟溃坝问题。通过液滴旋转和无透空块体溃坝问题的模拟验证了修正SPH方法的有效性和在自由表面模拟中的准确性,分析了密度初始化对流动的影响;数值结果表明,修正SPH方法提高了数值计算的精度和稳定性。最后应用修正SPH方法模拟了有透空块体和挡板紧挨水柱的溃坝现象,比较了有无透空块体两种情况下右端直墙上压力变化情况,结果表明,透空块体可使右端直墙上的压力减小,有无挡板、挡板位置和水柱长高比对溃坝现象有重要影响。  相似文献   

19.
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.  相似文献   

20.
An iterative boundary element method, which was originally developed for both two‐ and three‐dimensional cavitating hydrofoils moving steadily under a free surface, is modified and extended to predict the wave pattern and wave resistance of surface piercing bodies, such as ship hulls and vertical struts. The iterative nonlinear method, which is based on the Green theorem, allows the separation of the surface piercing body problem and the free‐surface problem. The free‐surface problem is also separated into two parts; namely, left and right (with respect to x axis) free‐surface problems. Those all (three) problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The wetted surface of the body (ship hull or strut, including cavity surface if exists) and the left and right parts with respect to x axis of free surface are modelled with constant strength dipole and constant strength source panels. In order to prevent upstream waves, the source strengths from some distance in front of the body to the end of the truncated upstream boundary are enforced to be zero. No radiation condition is enforced for downstream and transverse boundaries. A transverse wave cut technique is used for the calculation of wave resistance. The method is first applied to a point source and a three‐dimensional submerged cavitating hydrofoil to validate the method and a Wigley hull and a vertical strut to compare the results with those of experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号